Skip to main content

Applications of Decellularized Materials for Tissue Repair

  • Chapter
  • First Online:
Book cover Decellularized Materials
  • 589 Accesses

Abstract

The pursuit of tissue engineering and regenerative medicine is to regenerate functional tissues and organs to replace damaged or diseased tissue. As a basic element of tissue engineering, scaffolds provide three-dimensional structure for cell growth while maintaining cell function, so the selection of scaffold materials is of great importance. Natural extracellular matrix is a potential therapeutic material because it is a naturally structured non-cellular tissue component with low immunogenicity, high biological activity, and can provide a unique microenvironment for cells. In addition, acellular materials can not only provide chemical and mechanical signals that determine the fate of cells, but also act as components of newly formed tissues, promoting damage repair. This chapter will focus on the repair ability of acellular materials in different tissues, and provide reference for the experimental research and development of different tissue repair materials and their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopedic tissue engineering. Biotechnol Adv. 2014;32:462–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices. 2007;4:405–18.

    Article  CAS  PubMed  Google Scholar 

  3. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.

    Article  PubMed  Google Scholar 

  4. Young MF. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos Int. 2003;14(Suppl 3):S35–42.

    Article  CAS  PubMed  Google Scholar 

  5. Wegst UGK, Ashby MF. The mechanical efficiency of natural materials. Philos Mag. 2004;84:2167–86.

    Article  CAS  Google Scholar 

  6. Ning CQ. Biomaterials for bone tissue engineering. In: Biomechanics and biomaterials in orthopedics. New York: Springer; 2016. p. 35–57.

    Google Scholar 

  7. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res. 2000;50:50–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995;3:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong HJ, Gwak SJ, Seo KD, Lee S, Yun JH, Cho YS, Lee SJ. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int J Mol Sci. 2020;21:1863.

    Article  CAS  PubMed Central  Google Scholar 

  11. Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 2013;101:2424–35.

    Article  PubMed  Google Scholar 

  12. Hench L, Potak L. Third-generation biomedical materials. Science. 2002;8:1014–7.

    Article  Google Scholar 

  13. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res. 1998;355:S247–56.

    Article  Google Scholar 

  14. Vallet-Regí M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. J Biomed Mater Res. 1999;44:416–21.

    Article  PubMed  Google Scholar 

  15. Li PJ, Nakanishi K, Kokubo T. Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials. 1993;14:963–8.

    Article  CAS  PubMed  Google Scholar 

  16. Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med. 1990;1:233–8.

    Article  CAS  Google Scholar 

  17. Campbell AA, Fryxell GE, Linehan JC, Graff GL. Surface-induced mineralization: a new method for producing calcium phosphate coatings. J Biomed Mater Res. 1996;32:111–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wen HB, Wijn JRD, Cui FZ, Groot KD. Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J Biomed Mater Res. 1998;41:227–36.

    Article  CAS  PubMed  Google Scholar 

  19. Tretinnikov ON, Kato K, Ikada Y. In vitro hydroxyapatite deposition onto a film surface-grated with organophosphate polymer. J Biomed Mater Res. 1994;28:1365–73.

    Article  CAS  PubMed  Google Scholar 

  20. Tanahashi M, Yao T, Kokubo T. Apatite coated on organic polymers by biomimetic process: improvement in adhesion to substrate by HCl treatment. J Mater Sci Mater Med. 1995;6:319–26.

    Article  CAS  Google Scholar 

  21. Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices. Nat Med. 1996;2:824–6.

    Article  CAS  PubMed  Google Scholar 

  22. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25.

    Article  CAS  Google Scholar 

  23. Minabe M. A critical review of the biologic rationale for guided tissue regeneration. J Periodontol. 1991;62:171–9.

    Article  CAS  PubMed  Google Scholar 

  24. Susmita B, Mangal R, Amit B. A recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54.

    Article  Google Scholar 

  25. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials. 2007;28:5544–54.

    Article  CAS  PubMed  Google Scholar 

  26. Mansour A, Mezour MA, Badran Z, Tamimi F. Extracellular matrices for bone regeneration: a literature review. Tissue Eng Part A. 2017;23:1436–51.

    Article  PubMed  Google Scholar 

  27. Zeitouni S, Krause U, Clough BH, Halderman H, Falster A, Blalock DT, Chaput CD, Sampson HW, Gregory CA. Human mesenchymal stem cell derived matrices for enhanced osteoregeneration. Sci Transl Med. 2012;4:132ra155.

    Article  Google Scholar 

  28. Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CA, Mitraki A. Self-assembled proteins and peptides as scaffolds for tissue regeneration. Adv Healthc Mater. 2015;4:2557–86.

    Article  CAS  PubMed  Google Scholar 

  29. Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23:397–418.

    Article  CAS  PubMed  Google Scholar 

  30. Mathews S, Mathew SA, Gupta PK, Bhonde R, Totey S. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J Tissue Eng Regen Med. 2014;8:143–52.

    Article  CAS  PubMed  Google Scholar 

  31. Adele LB. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Rep. 2013;2:447.

    Google Scholar 

  32. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17:319–36.

    Article  CAS  PubMed  Google Scholar 

  34. Ao HY, Xie YT, Yang SB, Wu XD, Li K, Zheng XB, Tang TT. Covalently immobilised type I collagen facilitates osteoconduction and osseointegration of titanium coating implants. J Orthop Transl. 2016;5:16–25.

    Google Scholar 

  35. Weatherholt AM, Fuchs RK, Warden SJ. Specialized connective tissue: bone, the structural framework of the upper extremity. J Hand Ther. 2012;25:123–31. quiz 132

    Article  PubMed  Google Scholar 

  36. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashimoto Y, Funamoto S, Kimura T. The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials. 2011;32:7060–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gerhardt LC, Widdows KL, Erol MM. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res A. 2013;101:827–41.

    Article  PubMed  Google Scholar 

  39. Ventura RD, Padalhin AR, Min Y-K, Lee B-T. Bone regeneration using hydroxyapatite sponge scaffolds with in vivo deposited extracellular matrix. Tissue Eng A. 2015;21:2649–61.

    Article  CAS  Google Scholar 

  40. Marcos-Campos I, Marolt D, Petridis P, Bhumiratana S, Schmidt D, Vunjak-Novakovic G. Bone scaffold architecture modulates the development of mineralized bone matrix 2155 by human embryonic stem cells. Biomaterials. 2012;33:8329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, Marolt D. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110:8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mirjam F, Warren L, Grayson D, Marolt J, Gimble M, Nevenka K, Gordana V. Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng. 2010;16:179–89.

    Article  Google Scholar 

  43. Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, Grayson WL. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng. 2016;2:1806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee DJ, Diachina S, Lee YT, Zhao L, Zou R, Tang N, Han H, Chen X, Ko CC. Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng. 2016;7:2041731416680306.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hesse E, Kluge G, Atfi A, Correa D, Haasper C, Berding G, Shin HO, Viering J, Langer F, Vogt PM, Krettek C, Jagodzinski M. Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone. 2010;46:1457–63.

    Article  PubMed  Google Scholar 

  46. Borges GJ, Novaes AB Jr, Grisi MF, Palioto DB, Taba M Jr, de Souza SL. Acellular dermis as a dermal matrix of tissue engineered skin substitute for burns treatment. Clin Oral Implants Res. 2009;20:1105–15.

    Article  PubMed  Google Scholar 

  47. Uitto J. Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Clin Geriatr Med. 1989;5:127–47.

    Article  CAS  PubMed  Google Scholar 

  48. Smith MM, Melrose J. Proteoglycans in normal and healing skin. Adv Wound Care. 2015;4:152–73.

    Article  Google Scholar 

  49. Medalie DA, Tompkins RG, Morgan JR. Evaluation of acellular human dermis as a dermal analog in a composite skin graft. ASAIO J. 1996;42:M455.

    Article  CAS  PubMed  Google Scholar 

  50. Kim HJ, Park SS, Oh SY, Kim H, Kweon OK, Woo HM, Kim WH. Effect of acellular dermal matrix as a delivery carrier of adipose-derived mesenchymal stem cells on bone regeneration. J Biomed Mater Res B Appl Biomater. 2012;100:1645–53.

    Article  PubMed  Google Scholar 

  51. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  52. Smith SE, Roukis TS. Bone and wound healing augmentation with platelet-rich plasma. Clin Pediatr Med Surg. 2009;26:559–88.

    Article  Google Scholar 

  53. Jeong WH, Roh TS, Kim YS, Kang EH, Jung BK, Lee WJ, Lew DH, Yun IS. Acceleration of osteogenesis by platelet-rich plasma with acellular dermal matrix in a calvarial defect model. Childs Nerv Syst. 2016;32:1653–9.

    Article  PubMed  Google Scholar 

  54. Sun Y, Yan LQ, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater. 2018;74:56–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Mori A, Pena Fernandez M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers. 2018;10(3):285.

    Article  PubMed Central  Google Scholar 

  56. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou XB, Li S, Deng Y, He NY. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bian LM, Hou C, Tous E, Rai R, Mauck RL, Burdick JA. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials. 2013;34(2):413–21.

    Article  CAS  PubMed  Google Scholar 

  58. Kosiur JR, Collins RA. Weight-bearing compared with non-weight-bearing following osteochondral autograft transfer for small defects in weight-bearing areas in the femoral articular cartilage of the knee. J Bone Joint Surg Am. 2014;96:16.

    Article  Google Scholar 

  59. Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des. 2009;15(12):1334–48.

    Article  CAS  PubMed  Google Scholar 

  60. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen JL, Duan L, Zhu W, Xiong J, Wang D. Extracellular matrix production in vitro in cartilage tissue engineering. J Transl Med. 2014;12:88.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol. 2015;11(9):521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;2013:284873.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Osiecka-Iwan A, Hyc A, Radomska-Lesniewska DM, Rymarczyk A, Skopinski P. Antigenic and immunogenic properties of chondrocytes. Implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases. Cent Eur J Immunol. 2018;43(2):209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Almarza AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng. 2004;32(1):2–17.

    Article  PubMed  Google Scholar 

  66. O'Connell G, Garcia J, Amir J. 3D bioprinting: new directions in articular cartilage tissue engineering. ACS Biomater Sci Eng. 2017;3(11):2657–68.

    Article  CAS  PubMed  Google Scholar 

  67. Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015;3(4):177–92.

    Article  PubMed  Google Scholar 

  68. Armientoa AR, Stoddartab MJ, Alinia M, Eglina D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 2018;65:1–20.

    Article  Google Scholar 

  69. Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li ZB, Deng HB, Wang Q. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomater Sci Eng. 2018;4(8):2704–15.

    Article  CAS  PubMed  Google Scholar 

  70. Basiri A, Farokhi M, Azami M, Ebrahimi-Barough S, Mohamadnia A, Rashtbar M, Hasanzadeh E, Mahmoodi N, Baghaban Eslaminejad M, Ai J. A silk fibroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering. Prog Biomater. 2019;8(1):31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32(25):5773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gardner OFW, Musumeci G, Neumann AJ, Eglin D, Archer CW, Alini M, Stoddart MJ. Asymmetrical seeding of MSCs into fibrin-poly (ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J Tissue Eng Regen Med. 2017;11(10):2912–21.

    Article  CAS  PubMed  Google Scholar 

  73. Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. 2015;84:107–22.

    Article  CAS  PubMed  Google Scholar 

  74. Fazal N, Latief N. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthr Cartil. 2018;26(12):1583–94.

    Article  CAS  Google Scholar 

  75. Liao JF, Shi K, Ding QX, Qu Y, Luo F, Qian ZY. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol. 2014;10(10):3085–104.

    Article  CAS  PubMed  Google Scholar 

  76. Liao JH, Guo XA, Grande-Allen KJ, Kasper FK, Mikos AG. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials. 2010;31(34):8911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M. Cartilage constructs engineered from chondrocytes overexpressing Igf-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013;25:229–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Szychlinska MA, Stoddart MJ, D'Amora U, Ambrosio L, Alini M, Musumeci G. Mesenchymal stem cell-based cartilage regeneration approach and cell senescence: can we manipulate cell aging and function? Tissue Eng Part B. 2017;23(6):529–39.

    Article  Google Scholar 

  79. Shin SC, Park HY, Shin N, Jung DW, Kwon HK, Kim JM, Wang SG, Lee JC, Sung ES, Park GC, Lee BJ. Evaluation of decellularized xenogenic porcine auricular cartilage as a novel biocompatible filler. J Biomed Mater Res B. 2018;106(7):2708–15.

    Article  CAS  Google Scholar 

  80. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  81. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang YY, He YJ, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials. 2009;30(23-24):4021–8.

    Article  CAS  PubMed  Google Scholar 

  83. Benders KEM, van Weeren PR, Badylak SF, Saris DBF, Dhert WJA, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013;31(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  84. Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci. 2016;1383:139–59.

    Article  CAS  PubMed  Google Scholar 

  85. Dikina AD, Almeida HV, Cao M, Kelly DJ, Alsberg E. Scaffolds derived from ECM produced by chondrogenically induced human MSC condensates support human MSC chondrogenesis. ACS Biomater Sci Eng. 2017;3(7):1426–36.

    Article  CAS  PubMed  Google Scholar 

  86. He F, Chen XD, Pei M. Reconstruction of an In vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Pt A. 2009;15(12):3809–21.

    Article  CAS  Google Scholar 

  87. Zhang WX, Zhu Y, Li J, Guo QY, Peng J, Liu SC, Yang JH, Wang Y. Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng Part B. 2016;22(3):193–207.

    Article  Google Scholar 

  88. Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2019;4(1):83–95.

    Article  PubMed  Google Scholar 

  89. Jia SJ, Liu L, Pan WM, Meng GL, Duan CG, Zhang LQ, Xiong Z, Liu J. Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. J Biosci Bioeng. 2012;113(5):647–53.

    Article  CAS  PubMed  Google Scholar 

  90. Jin CZ, Choi BH, Park SR, Min BH. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J Biomed Mater Res A. 2010;92a(4):1567–77.

    CAS  Google Scholar 

  91. Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci. 2015;15(2):153–82.

    Article  CAS  PubMed  Google Scholar 

  92. Zeng L, Chen XF, Zhang Q, Yu F, Li YL, Yao YC. Redifferentiation of dedifferentiated chondrocytes in a novel three-dimensional microcavitary hydrogel. J Biomed Mater Res A. 2015;103(5):1693–702.

    Article  PubMed  Google Scholar 

  93. Cheng NC, Estes BT, Young TH, Guilak F. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen Med. 2011;6(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  94. von Bomhard A, Elsaesser A, Riepl R, Pippich K, Faust J, Schwarz S, Koerber L, Breiter R, Rotter N. Cartilage regeneration using decellularized cartilage matrix: long-term comparison of subcutaneous and intranasal placement in a rabbit model. J Cranio-Maxillofac Surg. 2019;47(4):682–94.

    Article  Google Scholar 

  95. Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao YL. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 2011;32(9):2265–73.

    Article  CAS  PubMed  Google Scholar 

  96. Li YQ, Xu Y, Liu YQ, Wang ZX, Chen WM, Duan L, Gu DY. Decellularized cartilage matrix scaffolds with laser-machined micropores for cartilage regeneration and articular cartilage repair. Mat Sci Eng C Mater. 2019;105:110139.

    Article  CAS  Google Scholar 

  97. Jin CZ, Cho JH, Choi BH, Wang LM, Kim MS, Park SR, Yun JH, Oh HJ, Min BH. The maturity of tissue-engineered cartilage in vitro affects the repairability for osteochondral defect. Tissue Eng Pt A. 2011;17(23-24):3057–65.

    Article  CAS  Google Scholar 

  98. Nie XL, Chuah YJ, Zhu WZ, He PF, Peck Y, Wang DA. Decellularized tissue engineered hyaline cartilage graft for articular cartilage repair. Biomaterials. 2020;235:119821.

    Article  CAS  PubMed  Google Scholar 

  99. Lehmann J, Nurnberger S, Narcisi R, Stok S, van der Eerden BCJ, Koevoet WJLM, Kops N, ten Berge D, van Osch GJ. Recellularization of auricular cartilage via elastase-generated channels. Biofabrication. 2019;11(3):035012.

    Article  CAS  PubMed  Google Scholar 

  100. Ibsirlioglu T, Elcin AE, Elcin YM. Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods. 2020;171:97–107.

    Article  CAS  PubMed  Google Scholar 

  101. Sawatjui N, Limpaiboon T, Schrobback K, Klein T. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. J Tissue Eng Regen Med. 2018;12(5):1220–9.

    Article  CAS  PubMed  Google Scholar 

  102. Jaipaew J, Wangkulangkul P, Meesane J, Raungrut P, Puttawibul P. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Mater Sci Eng C Mater Biol Appl. 2016;64:173–82.

    Article  CAS  PubMed  Google Scholar 

  103. Song L, Baksh D, Tuan RS. Mesenchymal stem cell-based cartilage tissue engineering: cells, scaffold and biology. Cytotherapy. 2004;6(6):596–601.

    Article  CAS  PubMed  Google Scholar 

  104. Jorgensen C, Gordeladze J, Noel D. Tissue engineering through autologous mesenchymal stem cells. Curr Opin Biotechnol. 2004;15(5):406–10.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou GD, Liu W, Cui L, Wang XY, Liu TY, Cao YL. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006;12(11):3209–21.

    Article  CAS  PubMed  Google Scholar 

  106. Yang Q, Peng J, Lu S, Huang J, Yao J, Yang F, Wang S, Wang A, Xu W, Guo Q, Zhang L. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Tissue Eng Pt A. 2008;14(5):800.

    Google Scholar 

  107. Xue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012;33(24):5832–40.

    Article  CAS  PubMed  Google Scholar 

  108. Yang ZQ, Shi YY, Wei XC, He JR, Yang SH, Dickson G, Tang JQ, Xiang JJ, Song C, Li G. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Med. 2010;16(5):865–76.

    Article  CAS  Google Scholar 

  109. Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Pt A. 2009;15(2):231–41.

    Article  CAS  Google Scholar 

  110. Luo L, Chu JYJ, Eswaramoorthy R, Mulhall KJ, Kelly DJ. Engineering tissues that mimic the zonal nature of articular cartilage using decellularized cartilage explants seeded with adult stem cells. ACS Biomater Sci Eng. 2017;3(9):1933–43.

    Article  CAS  PubMed  Google Scholar 

  111. Kang HJ, Peng J, Lu SB, Liu SY, Zhang L, Huang JX, Sui X, Zhao B, Wang AY, Xu WJ, Luo ZJ, Guo QY. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med. 2014;8(6):442–53.

    Article  CAS  PubMed  Google Scholar 

  112. Cucchiarini M, Madry H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol. 2019;15(1):18–29.

    Article  PubMed  Google Scholar 

  113. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28(25):3587–93.

    Article  CAS  PubMed  Google Scholar 

  114. Ekenseair AK, Kasper FK, Mikos AG. Perspectives on the interface of drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  115. Yang Q, Teng BH, Wang LN, Li K, Xu C, Ma XL, Zhang Y, Kong DL, Wang LY, Zhao YH. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-beta3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine. 2017;12:6721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Macri L, Silverstein D, Clark RA. Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev. 2007;59(13):1366–81.

    Article  CAS  PubMed  Google Scholar 

  117. Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF beta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007;211(3):682–91.

    Article  CAS  PubMed  Google Scholar 

  118. Solorio LD, Vieregge EL, Dhami CD, Dang PN, Alsberg E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-beta 1. J Control Release. 2012;158(2):224–32.

    Article  CAS  PubMed  Google Scholar 

  119. Almeida HV, Liu YR, Cunniffe GM, Mulhall KJ, Matsiko A, Buckley CT, O'Brien FJ, Kelly DJ. Controlled release of transforming growth factor-beta 3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 2014;10(10):4400–9.

    Article  CAS  PubMed  Google Scholar 

  120. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med. 2019;16(6):549–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tozer S, Duprez D. Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today. 2005;75(3):226–36.

    Article  CAS  PubMed  Google Scholar 

  122. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99(3):203–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Birch HL, Thorpe CT, Rumian AP. Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J. 2013;3(1):12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hodgson RJ, O'Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85(1016):1157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Silva M, Ferreira FN, Alves NM, Paiva MC. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnol. 2020;18(1):23.

    Article  CAS  Google Scholar 

  126. Asahara H, Inui M, Lotz MK. Tendons and ligaments: connecting developmental biology to musculoskeletal disease pathogenesis. J Bone Miner Res. 2017;32(9):1773–82.

    Article  PubMed  Google Scholar 

  127. Kumai T, Yamada G, Takakura Y, Tohno Y, Benjamin M. Trace elements in human tendons and ligaments. Biol Trace Elem Res. 2006;114(1-3):151–61.

    Article  CAS  PubMed  Google Scholar 

  128. Kuo CK, Marturano JE, Tuan RS. Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:20.

    PubMed  PubMed Central  Google Scholar 

  129. Woo SL. Tissue engineering: use of scaffolds for ligament and tendon healing and regeneration. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):559–60.

    Article  PubMed  Google Scholar 

  130. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  CAS  PubMed  Google Scholar 

  131. Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 2014;102(5):1614–24.

    Article  PubMed  Google Scholar 

  132. Wheelton A, Mace J, Khan WS, Anand S. Biomaterials and fabrication to optimise scaffold properties for musculoskeletal tissue engineering. Curr Stem Cell Res Ther. 2016;11(7):578–84.

    Article  CAS  PubMed  Google Scholar 

  133. Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol. 2015;11(4):213–22.

    Article  CAS  PubMed  Google Scholar 

  134. No YJ, Tarafder S, Reischl B, Ramaswamy Y, Dunstan CR, Friedrich O, Lee CH, Zreiqat H. High-strength fiber-reinforced composite hydrogel scaffolds as biosynthetic tendon graft material. ACS Biomater Sci Eng. 2020;6(4):1887–98.

    Article  CAS  PubMed  Google Scholar 

  135. Cao GX, Huang Y, Li K, Fan YB, Xie HQ, Li XM. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7(33):5038–55.

    Article  CAS  PubMed  Google Scholar 

  136. Wang M, Li YQ, Cao J, Gong M, Zhang Y, Chen X, Tian MX, Xie HQ. Accelerating effects of genipin-crosslinked small intestinal submucosa for defected gastric mucosa repair. J Mater Chem B. 2017;5(34):7059–71.

    Article  CAS  PubMed  Google Scholar 

  137. Gu Y, Dai K. Substitution of porcine small intestinal submucosa for rabbit Achilles tendon, an experimental study. Zhonghua Yi Xue Za Zhi. 2002;82(18):1279–82.

    PubMed  Google Scholar 

  138. Murphy KD, Mushkudiani IA, Kao D, Levesque AY, Hawkins HK, Gould LJ. Successful incorporation of tissue-engineered porcine small-intestinal submucosa as substitute flexor tendon graft is mediated by elevated TGF-beta1 expression in the rabbit. J Hand Surg Am. 2008;33(7):1168–78.

    Article  PubMed  Google Scholar 

  139. Pridgen BC, Woon CYL, Kim M, Thorfinn J, Lindsey D, Pham H, Chang J. Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility. Tissue Eng Part C Med. 2011;17(8):819–28.

    Article  CAS  Google Scholar 

  140. Lipner J, Shen H, Cavinatto L, Liu WY, Havlioglu N, Xia YN, Galatz LM, Thomopoulos S. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng Pt A. 2015;21(21-22):2766–74.

    Article  CAS  Google Scholar 

  141. Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development. 2015;142(24):4191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tischer T, Vogt S, Aryee S, Steinhauser E, Adamczyk C, Milz S, Martinek V, Imhov AB. Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts. Arch Orthop Traum. 2007;127(9):735–41.

    Article  Google Scholar 

  143. Hsu J, Keener JD. Natural history of rotator cuff disease and implications on management. Oper Tech Orthop. 2015;25(1):2–9.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Aleem AW, Brophy RH. Outcomes of rotator cuff surgery: what does the evidence tell us? Clin Sports Med. 2012;31(4):665–74.

    Article  PubMed  Google Scholar 

  145. Han B, Jones IA, Yang Z, Fang W, Vangsness CT. Repair of rotator cuff tendon defects in aged rats using a growth factor injectable gel scaffold. Arthroscopy. 2020;36(3):629–37.

    Article  PubMed  Google Scholar 

  146. Maffulli N, Longo UG, Loppini M, Berton A, Spiezia F, Denaro V. Tissue engineering for rotator cuff repair: an evidence-based systematic review. Stem Cells Int. 2012;2012:418086.

    Article  PubMed  Google Scholar 

  147. Holton LH 3rd, Kim D, Silverman RP, Rodriguez ED, Singh N, Goldberg NH. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data. J Long-Term Eff Med Implants. 2005;15(5):547–58.

    Article  PubMed  Google Scholar 

  148. Adams JE, Zobitz ME, Reach JS, An KN, Steinmann SP. Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model. Arthroscopy. 2006;22(7):700–9.

    Article  PubMed  Google Scholar 

  149. Xu H, Sandor M, Qi SJ, Lombardi J, Connor J, McQuillan DJ, Iannotti JP. Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. J Shoulder Elb Surg. 2012;21(5):580–8.

    Article  Google Scholar 

  150. Stuart D. Kinsella publication rates of podium versus poster presentations at the American Orthopaedic Society for Sports Medicine meetings: 2006-2010. Am J Sports Med. 2015;43(5):1255–9.

    Article  Google Scholar 

  151. Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007;26(4):509–24.

    Article  PubMed  Google Scholar 

  152. Whitlock PW, Seyler TM, Parks GD, Ornelles DA, Smith TL, Van Dyke ME, Poehling GG. A novel process for optimizing musculoskeletal allograft tissue to improve safety, ultrastructural properties, and cell infiltration. J Bone Joint Surg Am. 2012;94a(16):1458–67.

    Article  Google Scholar 

  153. Bertone AL, Goin S, Kamei SJ, Mattoon JS, Litsky AS, Weisbrode SE, Clarke RB, Plouhar PL, Kaeding CC. Metacarpophalangeal collateral ligament reconstruction using small intestinal submucosa in an equine model. J Biomed Mater Res A. 2008;84a(1):219–29.

    Article  CAS  Google Scholar 

  154. Meskell M. Principles of anatomy and physiology. J Anat. 2010;217:631.

    Article  PubMed Central  Google Scholar 

  155. Pissarenko A, Meyers MA. The materials science of skin: analysis, characterization, and modeling. Prog Mater Sci. 2019;110:100634.

    Article  Google Scholar 

  156. Keck M, Lumenta DB, Kamolz LP. Skin tissue engineering. In: Dermal replacements in general, burn, and plastic surgery. New York: Springer; 2013. p. 13–25.

    Chapter  Google Scholar 

  157. Butler BJ, Boddy RL, Bo C, Arora H, Williams A, Proud WG, Brown KA. Composite nature of fresh skin revealed during compression. Bioinsp Biomim Nanobiomater. 2015;4:133–9.

    Google Scholar 

  158. Huzaira M, Rius F, Rajadhyaksha M. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Investig Dermatol. 2001;116:846–52.

    Article  CAS  PubMed  Google Scholar 

  159. Sandby-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83:410–3.

    Article  PubMed  Google Scholar 

  160. Hendriks FM, Brokken D, Oomens CW, Bader DL, Baaijens FP. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys. 2006;28:259–66.

    Article  CAS  PubMed  Google Scholar 

  161. Jor JW, Parker MD, Taberner AJ, Nash MP, Nielsen PM. Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip Rev Syst Biol Med. 2013;5:539–56.

    Article  PubMed  Google Scholar 

  162. Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater. 2015;49:197–219.

    Article  PubMed  Google Scholar 

  163. Wilkes GL, Brown IA, Wildnauer RH. The biomechanical properties of skin. CRC Crit Rev Bioeng. 1973;1:453.

    CAS  PubMed  Google Scholar 

  164. Limbert G. Mathematical and computational modelling of skin biophysics: a review. Proc Math Phys Eng Sci. 2017;473:20170257.

    PubMed  PubMed Central  Google Scholar 

  165. Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA. Fibronectin and -catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem. 2011;286:27687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Avery D, Govindaraju P, Jacob M, Todd L, Monslow J, Pure E. Extracellular matrix and dermal fibroblast function in the healing wound. Matrix Biol. 2018;67:90–106.

    Article  CAS  PubMed  Google Scholar 

  167. Allgöwer M, Schoenenberger GA, Sparkes BG. Burning the largest immune organ. Burns. 1995;21:S7–47.

    Article  PubMed  Google Scholar 

  168. Manimalha B, Kumar TR, Babu M. Skin substitutes: a review. Burns. 2001;27:534–44.

    Article  Google Scholar 

  169. Metcalfe AD, Ferguson MW. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials. 2007;28:5100–13.

    Article  CAS  PubMed  Google Scholar 

  170. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien C, Jeschke MG. Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther. 2014;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Blais M, Parenteau-Bareil R, Cadau S, Berthod F. Concise review: tissue-engineered skin and nerve regeneration in burn. Stem Cells Transl Med. 2013;2:545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Silvera-Tawil D, Rye D, Velonaki M. Artificial skin and tactile sensing for socially interactive robots: a review. Robot Auton Syst. 2015;63:230–43.

    Article  Google Scholar 

  173. Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for skin substitutes. Adv Healthc Mater. 2018;7:1700897.

    Article  Google Scholar 

  174. Jeschke MG, Sadri AR, Belo C, Amini-Nik S. A surgical device to study the efficacy of bioengineered skin substitutes in mice wound healing models. Tissue Eng Part C Methods. 2017;23:237–42.

    Article  PubMed  Google Scholar 

  175. Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses. 2009;72:679–82.

    Article  CAS  PubMed  Google Scholar 

  176. Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014;71:3241–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: current treatments and future directions. Adv Drug Deliv Rev. 2018;123:135–54.

    Article  CAS  PubMed  Google Scholar 

  178. Chin CD, Khanna K, Sia SK. A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomed Microdevices. 2008;10:459–67.

    Article  CAS  PubMed  Google Scholar 

  179. Hogrebe NJ, Reinhardt JW, Gooch KJ. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A. 2017;105:640–61.

    Article  CAS  PubMed  Google Scholar 

  180. Zhou H, You C, Wang X, Jin R, Wu P, Li Q, Han C. The progress and challenges for dermal regeneration in tissue engineering. J Biomed Mater Res A. 2017;105:1208–18.

    Article  CAS  PubMed  Google Scholar 

  181. Tatara AM, Mikos AG. Tissue engineering in orthopaedics. J Bone Joint Surg Am. 2016;98:1132–9.

    Article  PubMed  PubMed Central  Google Scholar 

  182. James KS, Cornwell KC, Greenburg AG. Extracellular matrix bioscaffolds for orthopaedic applications. J Bone Joint Surg. 2010;92:1316.

    PubMed  Google Scholar 

  183. Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. 2019;75-76:170–89.

    Article  CAS  PubMed  Google Scholar 

  184. Rilla K, Mustonen AM, Arasu UT, Harkonen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 2019;75-76:201–19.

    Article  CAS  PubMed  Google Scholar 

  185. Kawasaki T, Kirita Y, Kami D, Kitani T, Ozaki C, Itakura Y, Toyoda M, Gojo S. Novel detergent for whole organ tissue engineering. J Biomed Mater Res A. 2015;103:3364–73.

    Article  CAS  PubMed  Google Scholar 

  186. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yu YL, Shao YK, Ding YQ, Lin KZ, Chen B, Zhang HZ, Zhao LN, Wang ZB, Zhang JS, Tang ML, Mei J. Decellularized kidney scaffold-mediated renal regeneration. Biomaterials. 2014;35:6822–8.

    Article  CAS  PubMed  Google Scholar 

  188. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.

    Article  CAS  PubMed  Google Scholar 

  189. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  190. Jank BJ, Xiong L, Moser PT, Guyette JP, Ren X, Cetrulo CL, Leonard DA, Fernandez L, Fagan SP, Ott HC. Engineered composite tissue as a bioartificial limb graf. Biomaterials. 2015;61:246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Keane TJ, DeWard A, Londono R, Saldin LT, Castleton AA, Carey L, Nieponice A, Lagasse E, Badylak SF. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng Part A. 2015;21:2293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tukmachev D, Forostyak S, Koci Z, Zaviskova K, Vackova I, Vyborny K, Sandvig I, Sandvig A, Medberry CJ, Badylak SF, Sykova E, Kubinova S. Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A. 2016;22:306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. D’Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR. Bi-Layered polyurethane – extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1–14.

    Article  PubMed  Google Scholar 

  194. Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev. 2015;84:208–21.

    Article  CAS  PubMed  Google Scholar 

  195. Zhang J, Cheng WY, Hu ZQ, Turner NJ, Zhang L, Wang Q, Badylak SF. A panel data set on harvest and perfusion decellularization of porcine rectus abdominis. Data Brief. 2016;7:1375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Cui H, Chai Y, Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A. 2019;107:1849–59.

    CAS  PubMed  Google Scholar 

  197. Ng KW, Khor HL, Hutmacher DW. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials. 2004;25:2807–18.

    Article  CAS  PubMed  Google Scholar 

  198. Ellis CV, Kulber DA. Acellular dermal matrices in hand reconstruction. Plast Reconstr Surg. 2012;130:256S–69S.

    Article  CAS  PubMed  Google Scholar 

  199. Levin F, Turbin RE, Langer PD. Acellular human dermal matrix as a skin substitute for reconstruction of large periocular cutaneous defects. Ophthalmic Plast Reconstr Surg. 2011;27:44–7.

    Article  PubMed  Google Scholar 

  200. Liu Z, Zhou Q, Zhu J, Xiao J, Wan P, Zhou C, Huang Z, Qiang N, Zhang W, Wu Z, Quan D, Wang Z. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants. Biomaterials. 2012;33:7336–46.

    Article  CAS  PubMed  Google Scholar 

  201. Zhang Z, Lv L, Mamat M, Chen Z, Liu L, Wang Z. Xenogenic (porcine) acellular dermal matrix is useful for the wound healing of severely damaged extremities. Exp Ther Med. 2014;7:621–4.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Baldursson BT, Kjartansson H, Konradsdottir F, Gudnason P, Sigurjonsson GF, Lund SH. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds. 2015;14:37–43.

    Article  CAS  PubMed  Google Scholar 

  203. Dogeon Y, Ji-Seon L, Young JS. Honey incorporated antibacterial acellular dermal matrix for full-thickness wound healing. Macromol Res. 2018;1:1–8.

    Google Scholar 

  204. Han X, Liu H, Chen M, Gong L, Pang H, Deng X, Jin Y. Acellular dermal matrix from one-day-old mouse skin on adult scarless cutaneous wound repair by second harmonic generation microscopic imaging. RSC Adv. 2016;6:71852–62.

    Article  CAS  Google Scholar 

  205. Dziki JL, Wang DS, Pineda C, Sicari BM, Rausch T, Badylak SF. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J Biomed Mater Res A. 2017;105:138–47.

    Article  CAS  PubMed  Google Scholar 

  206. Oguzkurt P, Kayaselcuk F, Tuncer I, Alkan M, Hicsonmez A. Evaluation of extracellular matrix protein composition in sacs associated with undescended testis, hydrocele, inguinal hernia, and peritoneum. Urology. 2007;70:346–50.

    Article  PubMed  Google Scholar 

  207. Hoganson DM, Owens GE, O’Doherty EM, Bowley CM, Goldman SM, Harilal DO, Neville CM, Kronengold RT, Vacanti JP. Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials. 2010;31:6934–40.

    Article  CAS  PubMed  Google Scholar 

  208. Chun SY, Lim GJ, Kwon TG, Kwak EK, Kim BW, Atala A, Yoo JJ. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials. 2007;28:4251–6.

    Article  CAS  PubMed  Google Scholar 

  209. Hodde JP, Record RD, Lang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothel J Endothel Cell Res. 2001;8:11–24.

    CAS  Google Scholar 

  210. Wu Z, Tang Y, Fang H, Su Z, Xu B, Lin Y, Zhang P, Wei X. Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds. J Mater Sci Mater Med. 2015;26:5322.

    Article  PubMed  Google Scholar 

  211. Su Z, Ma H, Wu Z, Zeng H, Li Z, Wang Y, Liu G, Xu B, Lin Y, Zhang P, Wei X. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C Mater Biol Appl. 2014;44:440–8.

    Article  CAS  PubMed  Google Scholar 

  212. Luo X, Kulig KM, Finkelstein EB, Nicholson MF, Liu XH, Goldman SM, Vacanti JP, Grottkau BE, Pomerantseva I, Sundback CA, Neville CM. In vitro evaluation of decellularized ECM-derived surgical scaffold biomaterials. J Biomed Mater Res B Appl Biomater. 2017;105:585–93.

    Article  CAS  PubMed  Google Scholar 

  213. Cronce MJ, Faulknor RA, Pomerantseva I, Liu XH, Goldman SM, Ekwueme EC, Mwizerwa O, Neville CM, Sundback CA. In vivo response to decellularized mesothelium scaffolds. J Biomed Mater Res B Appl Biomater. 2018;106:716–25.

    Article  CAS  PubMed  Google Scholar 

  214. Capella-Monsonis H, Tilbury MA, Wall JG, Zeugolis DI. Porcine mesothelium matrix as a biomaterial for wound healing applications. Mater Today Biol. 2020;7:100057.

    Article  CAS  Google Scholar 

  215. Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR, Greco SC, Frisella MM, Matthews BD. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 2011;15:157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Deeken CR, Melman L, Jenkins ED, Greco SC, Frisella MM, Matthews BD. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg. 2011;212:880–8.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Singh H, Kumar N, Sharma AK, Kataria M, Munjal A, Kumar A, Dewangan R, Kumar V, Devarathnam J, Kumar S. Activity of MMP-9 after repair of abdominal wall defects with acellular and crosslinked bovine pericardium in rabbit. Int Wound J. 2014;11:5–13.

    Article  PubMed  Google Scholar 

  218. Ji Y, Zhou J, Sun T, Tang K, Xiong Z, Ren Z, Yao S, Chen K, Yang F, Zhu F, Guo X. Diverse preparation methods for small intestinal submucosa (SIS): decellularization, components, and structure. J Biomed Mater Res A. 2019;107:689–97.

    CAS  PubMed  Google Scholar 

  219. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Cell Dev Biol. 2002;13:377–83.

    CAS  Google Scholar 

  220. Nowocin AK, Southgate A, Gabe SM, Ansari T. Biocompatibility and potential of decellularized porcine small intestine to support cellular attachment and growth. J Tissue Eng Regen Med. 2016;10:E23–33.

    Article  CAS  PubMed  Google Scholar 

  221. Scheller K, Dally I, Hartmann N, Munst B, Braspenning J, Walles H. Upcyte® microvascular endothelial cells repopulate decellularized scaffold. Tissue Eng Part C Methods. 2013;19:57–67.

    Article  CAS  PubMed  Google Scholar 

  222. Glynn JJ, Polsin EG, Hinds MT. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103.

    Article  CAS  PubMed  Google Scholar 

  223. Oliveira AC, Garzon I, Ionescu AM, Carriel V, Cardona L, Gonzalez-Andrades M, Perez Mdel M, Alaminos M, Campos A. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One. 2013;8:e66538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fiala R, Vidlar A, Vrtal R, Belej K, Student V. Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol. 2007;51:1702–8.

    Article  PubMed  Google Scholar 

  225. Lemos NL, Kamergorodsky G, Faria AL, Ribeiro PA, Auge AP, Aoki T. Small intestinal submucosa patch for extensive vaginal endometriosis resection. J Minim Invasive Gynecol. 2009;16:765–7.

    Article  PubMed  Google Scholar 

  226. Keckler SJ, Spilde TL, Peter SDS, Tsao K, Ostlie DJ. Treatment of bronchopleural fistula with small intestinal mucosa and fibrin glue sealant. Ann Thorac Surg. 2007;84:1383–6.

    Article  PubMed  Google Scholar 

  227. Woo JS, Fishbein MC, Reemtsen B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc Pathol. 2016;25:12–7.

    Article  CAS  PubMed  Google Scholar 

  228. Dew L, English WR, Chong CK, MacNeil S. Investigating neovascularization in rat decellularized intestine: an in vitro platform for studying angiogenesis. Tissue Eng Part A. 2016;22:1317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Klinger A, Kawata M, Villalobos M, Jones RB, Pike S, Wu N, Chang S, Zhang P, DiMuzio P, Vernengo J, Benvenuto P, Goldfarb RD, Hunter K, Liu Y, Carpenter JP, Tulenko TN. Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia. 2016;20:161–70.

    Article  CAS  PubMed  Google Scholar 

  230. Groeber F, Engelhardt L, Lange J, Kurdyn S, Schmid FF, Rucker C, Mielke S, Walles H. A first vascularized skin equivalent as an alternative to animal experimentation. ALTEX. 2016;33:415–22.

    PubMed  Google Scholar 

  231. Liu S, Zhang H, Zhang X, Lu W, Huang X, Xie H, Zhou J, Wang W, Zhang Y, Liu Y, Deng Z, Jin Y. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Eng Part A. 2011;17:725–39.

    Article  CAS  PubMed  Google Scholar 

  232. Badylak SF, Tullius R, Kokini K. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res. 1995;29:977–85.

    Article  CAS  PubMed  Google Scholar 

  233. Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed. 1998;9:863–78.

    Article  CAS  PubMed  Google Scholar 

  234. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.

    Article  CAS  PubMed  Google Scholar 

  235. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M. Engineered whole organs and complex tissues. Biomaterials. 2014;35:970–82.

    Article  CAS  PubMed  Google Scholar 

  236. Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater. 2017;4:325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016;11:022003.

    Article  PubMed  Google Scholar 

  238. Hodde J, Janis A, Hiles M. Effects of sterilization on an extracellular matrix scaffold: part II. Bioactivity and matrix interaction. J Mater Sci Mater Med. 2007;18:545–50.

    Article  CAS  PubMed  Google Scholar 

  239. Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Huleihel L, Dziki JL, Bartolacci JG, Rausch T, Scarritt ME, Cramer MC, Vorobyov T, LoPresti ST, Swineheart IT, White LJ, Brown BN, Badylak SF. Macrophage phenotype in response to ECM bioscaffolds. Semin Immunol. 2017;29:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zeng R, Lin C, Lin Z. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res. 2018;374:57–63.

    Article  Google Scholar 

  242. Yeh DD, Nazarian RM, Demetri L, Mesar T, Dijkink S, Larentzakis A, Velmahos G, Sadik KW. Histopathological assessment of OASIS ultra on critical-sized wound healing: a pilot study. J Cutan Pathol. 2017;44:523–9.

    Article  PubMed  Google Scholar 

  243. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8:295–308.

    Article  CAS  PubMed  Google Scholar 

  244. Seeger JM. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. Yearbook Surg. 2006;2006:391–2.

    Article  Google Scholar 

  245. Wang L, Wang W, Liao J, Wang F, Jiang J, Cao C, Li S. Novel bilayer wound dressing composed of SIS membrane with SIS cryogel enhanced wound healing process. Mater Sci Eng C Mater Biol Appl. 2018;85:162–9.

    Article  CAS  PubMed  Google Scholar 

  246. Clough A, Ball J, Smith GS. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg. 2011;91:e15–6.

    Article  PubMed  Google Scholar 

  247. Ginting N, Tremblay L, Kortbeek JB. Surgisis® in the management of the complex abdominal wall in trauma: a case series and review of the literature. Injury. 2010;41:970–3.

    Article  PubMed  Google Scholar 

  248. Brtil E, Brtil CP, Comandau DE. Perineal reconstruction with biologic graft vulvoplasty for verrucous carcinoma treated by repeated vulvar excisions: a case report. Romanian J Morphol Embryol. 2015;56:537–43.

    Google Scholar 

  249. Trelford JD, Trelford-Sauder M. The amnion in surgery, past and present. Am J Obstet Gynecol. 1979;134:833–45.

    Article  CAS  PubMed  Google Scholar 

  250. Simone HB. The grafting of preserved amniotic membrane to burned and ulcerated surfaces. Cell Tissue Bank. 2007;2007:77–84.

    Google Scholar 

  251. Tseng SCG, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H, Liu T-S, Cho T-H, Gao Y-Y, Yeh L-K, Liu C-Y. How does amniotic membrane work? Ocul Surf. 2004;2:177–87.

    Article  PubMed  Google Scholar 

  252. Wilshaw SP, Kearney JN, Fisher J. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 2006;12:2117.

    Article  CAS  PubMed  Google Scholar 

  253. Chen YJ, Chung MC, Jane Yao CC, Huang CH, Chang HH, Jeng JH, Young TH. The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials. 2012;33:455–63.

    Article  CAS  PubMed  Google Scholar 

  254. Wilshaw SP, Kearney J, Fisher J, Ingham E. Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng Part A. 2008;14:463–72.

    Article  CAS  PubMed  Google Scholar 

  255. Kshersagar J, Kshirsagar R, Desai S, Bohara R, Joshi M. Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing. Cell Tissue Bank. 2018;19:423–36.

    Article  CAS  PubMed  Google Scholar 

  256. Yang L, Shirakata Y, Tokumaru S, Xiuju D, Tohyama M, Hanakawa Y, Hirakawa S, Sayama K, Hashimoto K. Living skin equivalents constructed using human amnions as a matrix. 107. New skin-equivalent model from de-epithelialized amnion membrane. J Dermatol Sci. 2009;56:188–95.

    Article  CAS  PubMed  Google Scholar 

  257. Yang L, Shirakata Y, Shudou M, Dai X, Tokumaru S, Hirakawa S, Sayama K, Hamuro J, Hashimoto K. New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res. 2006;326:69–77.

    Article  CAS  PubMed  Google Scholar 

  258. Kim SS, Song CK, Shon SK, Lee KY, Kim CH, Lee MJ, Wang L. Effects of amniotic membrane extract and deferoxamine on angiogenesis in wound healing: an in vivo model. Cell Tissue Res. 2009;336:59–66.

    Article  PubMed  Google Scholar 

  259. Momeni M, Zarehaghighi M, Hajimiri M, Khorasani G, Dinarvand R, Nekookar A, Sodeifi N, Khosravani P, Shayanasl N, Ebrahimi M. In vitro and in vivo investigation of a novel amniotic based chitosan dressing for wound healing. Wound Repair Regen. 2018;26:87–101.

    Article  PubMed  Google Scholar 

  260. Chuck RS, Graff JM, Bryant MR, Sweet PM. Biomechanical characterization of human amniotic membrane preparations for ocular surface reconstruction. Ophthalmic Res. 2004;36:341–8.

    Article  PubMed  Google Scholar 

  261. Henderson PW, Nagineni VV, Harper A, Bavinck N, Sohn AM, Krijgh DD, Jimenez N, Weinstein AL, Spector JA. Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res. 2010;164:1–5.

    Article  CAS  PubMed  Google Scholar 

  262. Qu J, Van Hogezand RM, Zhao C, Kuo BJ, Carlsen BT. Decellularization of a fasciocutaneous flap for use as a perfusable scaffold. Ann Plast Surg. 2015;75:112–6.

    Article  CAS  PubMed  Google Scholar 

  263. Schmidt VJ, Wietbrock JO, Leibig N, Hernekamp JF, Henn D, Radu CA, Kneser U. Hemodynamically stimulated and in vivo generated axially vascularized soft tissue free flaps for closure of complex defects: Evaluation in a small animal model. J Tissue Eng Regen Med. 2018;12:622–32.

    Article  CAS  PubMed  Google Scholar 

  264. Zhang Q, Johnson JA, Dunne LW. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater. 2016;35:166–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodríguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009;30:3259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol. 2013;207:7–15.

    Article  CAS  Google Scholar 

  267. Carattino MD, Prakasam HS, Ruiz WG, Clayton DR, McGuire M, Gallo LI, Apodaca G. Bladder filling and voiding affect umbrella cell tight junction organization and function. Am J Physiol Renal Physiol. 2013;305:F1158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Andersson KE, McCloskey KD. Lamina propria: the functional center of the bladder? Neurourol Urodyn. 2014;33:9–16.

    Article  PubMed  Google Scholar 

  269. Shah AP, Mevcha A, Wilby D, Alatsatianos A, Hardman JC, Jacques S, Wilton JC. Continence and micturition: an anatomical basis. Clin Anat. 2014;27:1275–83.

    Article  PubMed  Google Scholar 

  270. Wyndaele JJ. The management of neurogenic lower urinary tract dysfunction after spinal cord injury. Nat Rev Urol. 2016;13:705–14.

    Article  PubMed  Google Scholar 

  271. Atala A. Tissue engineering of human bladder. Br Med Bull. 2011;97:81–104.

    Article  PubMed  Google Scholar 

  272. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.

    Article  PubMed  Google Scholar 

  273. Atala A. Bladder regeneration by tissue engineering. BJU Int. 2015;88:765–70.

    Article  Google Scholar 

  274. Tiemessen D, de Jonge P, Daamen W, Feitz W, Geutjes P, Oosterwijk E. The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol. 2017;35:1531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Birder LA. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vasc Pharmacol. 2006;45:221–6.

    Article  CAS  Google Scholar 

  276. Farhat WA, Yeger H. Does mechanical stimulation have any role in urinary bladder tissue engineering? World J Urol. 2008;26:301–5.

    Article  PubMed  Google Scholar 

  277. Gill BC, Damaser MS, Chermansky CJ. Future perspectives in bladder tissue engineering. Curr Bladder Dysfunct Rep. 2014;10:443–8.

    Article  PubMed  Google Scholar 

  278. Guilak F, Butler DL, Goldstein SA, Baaijens FP. Biomechanics and mechanobiology in functional tissue engineering. J Biomech. 2014;47:1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev. 2015;82-83:47–63.

    Article  CAS  PubMed  Google Scholar 

  280. Osborn SL, Kurzrock EA. Bioengineered bladder tissue—close but yet so far! J Urol. 2015;194:619–20.

    Article  PubMed  Google Scholar 

  281. Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol. 2018;15:155–74.

    Article  PubMed  Google Scholar 

  282. Horst M, Madduri S, Gobet R, Sulser T, Milleret V, Hall H, Atala A, Eberli D. Engineering functional bladder tissues. J Tissue Eng Regen Med. 2013;7:515–22.

    Article  CAS  PubMed  Google Scholar 

  283. Wiles K, Fishman JM, De Coppi P, Birchall MA. The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev. 2016;22:208–19.

    Article  PubMed  Google Scholar 

  284. Wrenn SM, Weiss DJ. Whole-organ tissue engineering: no longer just a dream. Curr Pathobiol Rep. 2016;4:87–98.

    Article  Google Scholar 

  285. Corona BT, Ward CL, Harrison BS, Christ GJ. Regenerative medicine: basic concepts, current status, and future applications. J Investig Med. 2010;58:849–58.

    Article  PubMed  Google Scholar 

  286. Simoes IN, Vale P, Soker S, Atala A, Keller D, Noiva R, Carvalho S, Peleteiro C, Cabral JM, Eberli D, da Silva CL, Baptista PM. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep. 2017;7:41934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Turner AM, Subramaniam R, Thomas DF, Southgate J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur Urol. 2008;54:1423–32.

    Article  PubMed  Google Scholar 

  288. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.

    Article  CAS  PubMed  Google Scholar 

  289. Liu Y, Bharadwaj S, Lee SJ, Atala A, Zhang Y. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials. 2009;30:3865–73.

    Article  CAS  PubMed  Google Scholar 

  290. Oberpenning F, Meng J, Yoo JJ. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149–55.

    Article  CAS  PubMed  Google Scholar 

  291. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98:1100–5.

    Article  PubMed  Google Scholar 

  292. Reddy PP, Barrieras DJ, Wilson G. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol. 2000;164:936–41.

    Article  CAS  PubMed  Google Scholar 

  293. Sievert KD, Amend B, Stenzl A. Tissue engineering for the lower urinary tract: a review of a state of the art approach. Eur Urol. 2007;52:1580–9.

    Article  PubMed  Google Scholar 

  294. Brown A, Farhat W, Merguerian P. 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials. 2002;23:2179–90.

    Article  CAS  PubMed  Google Scholar 

  295. Biers SM, Venn SN, Greenwell TJ. The past, present and future of augmentation cystoplasty. BJU Int. 2012;109:1280–93.

    Article  PubMed  Google Scholar 

  296. Kajbafzadeh AM, Khorramirouz R, Sabetkish S, Ataei Talebi M, Akbarzadeh A, Keihani S. Pediatr Surg Int. 2016;32:615–22.

    Article  PubMed  Google Scholar 

  297. Ayyildiz A, Akgul KT, Huri E, Nuhoglu B, Kilicoglu B, Ustun H, Gurdal M, Germiyanoglu C. Use of porcine small intestinal submucosa in bladder augmentation in rabbit: longterm histological outcome. ANZ J Surg. 2008;78:82–6.

    Article  PubMed  Google Scholar 

  298. Song L, Murphy SV, Yang B, Xu Y, Zhang Y, Atala A. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng Part B Rev. 2014;20:163–72.

    Article  CAS  PubMed  Google Scholar 

  299. Elbahnasy A, Shalhav A, Hoenig D. Bladder wall substitution with synthetic and non-intestinal organic materials. J Urol. 1998;159:628–37.

    Article  CAS  PubMed  Google Scholar 

  300. Kapur SK, Butler CE. Lateral abdominal wall reconstruction. Semin Plast Surg. 2018;32(3):141–6.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Hutan M, Bartko C, Majesky I, Prochotsky A, Sekac J, Skultety J. Reconstruction option of abdominal wounds with large tissue defects. BMC Surg. 2014;14:50.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Patel NG, Ratanshi I, Buchel EW. The best of abdominal wall reconstruction. Plast Reconstr Surg. 2018;141(1):113e–36e.

    Article  CAS  PubMed  Google Scholar 

  303. Rosen MJ, Krpata DM, Ermlich B, Blatnik JA. A 5-year clinical experience with single-staged repairs of infected and contaminated abdominal wall defects utilizing biologic mesh. Ann Surg. 2013;257(6):991–6.

    Article  PubMed  Google Scholar 

  304. Shahan CP, Stoikes NF, Webb DL, Voeller GR. Sutureless onlay hernia repair: a review of 97 patients. Surg Endosc. 2016;30(8):3256–61.

    Article  PubMed  Google Scholar 

  305. Rohrich RJ, Lowe JB, Hackney FL, Bowman JL, Hobar PC. An algorithm for abdominal wall reconstruction. Plast Reconstr Surg. 2000;105(1):202–16.

    Article  CAS  PubMed  Google Scholar 

  306. Dubay DA, Wang X, Adamson B, Kuzon WM, Dennis RG, Franz MG. Mesh incisional herniorrhaphy increases abdominal wall elastic properties: a mechanism for decreased hernia recurrences in comparison with suture repair. Surgery. 2006;140(1):14–24.

    Article  PubMed  Google Scholar 

  307. Bellows CF, Alder A, Helton WS. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices. 2006;3(5):657–75.

    Article  PubMed  Google Scholar 

  308. Smith SE, Cozad MJ, Grant DA, Ramshaw BJ, Grant SA. Materials characterization of explanted polypropylene hernia mesh: Patient factor correlation. J Biomater Appl. 2016;30(7):1026–35.

    Article  CAS  PubMed  Google Scholar 

  309. Bringman S, Conze J, Cuccurullo D, Deprest J, Junge K, Klosterhalfen B, Parra-Davila E, Ramshaw B, Schumpelick V. Hernia repair: the search for ideal meshes. Hernia. 2010;14(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  310. Burger JWA, Luijendijk RW, Hop WCJ, Halm JA, Verdaasdonk EGG, Jeekel J. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg. 2004;240(4):578–83.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 2004;52(2):188–94.

    Article  PubMed  Google Scholar 

  312. Breuing K, Butler CE, Ferzoco S, Franz M, Hultman CS, Kilbridge JF, Rosen M, Silverman RP, Vargo D, Grp VHW. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery. 2010;148(3):544–58.

    Article  PubMed  Google Scholar 

  313. Margulies IG, Salzberg CA. The use of acellular dermal matrix in breast reconstruction: evolution of techniques over 2 decades. Gland Surg. 2019;8(1):3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Burns NK, Jaffari MV, Rios CN, Mathur AB, Butler CE. Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction. Plast Reconstr Surg. 2010;125(1):167–76.

    Article  CAS  PubMed  Google Scholar 

  315. Ghazi B, Deigni O, Yezhelyev M, Losken A. Current options in the management of complex abdominal wall defects. Ann Plast Surg. 2011;66(5):488–92.

    Article  CAS  PubMed  Google Scholar 

  316. Nemeth NL, Butler CE. Complex torso reconstruction with human acellular dermal matrix: long-term clinical follow-up. Plast Reconstr Surg. 2009;123(1):192–6.

    Article  CAS  PubMed  Google Scholar 

  317. Eberli D, Rodriguez S, Atala A, Yoo JJ. In vivo evaluation of acellular human dermis for abdominal wall repair. J Biomed Mater Res A. 2010;93a(4):1527–38.

    CAS  Google Scholar 

  318. Wang MG, Yang S, Cao Z, Hu SY. Application of acellular tissue matrix for enhancement of weak abdominal wall in animal model. Biomed Res Int. 2020;2020:3475289.

    PubMed  PubMed Central  Google Scholar 

  319. Sahoo S, Baker AR, Haskins IN, Krpata DM, Rosen MJ, Derwin KA. Assessment of human acellular dermis graft in porcine models for ventral hernia repair. Tissue Eng Part C Med. 2017;23(11):718–27.

    Article  Google Scholar 

  320. Menon NG, Rodriguez ED, Byrnes CK, Girotto JA, Goldberg NH, Silverman RP. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. (vol 50, pg 523, 2002). Ann Plast Surg. 2003;51(2):228.

    Google Scholar 

  321. Ngo MD, Aberman HM, Hawes ML, Choi B, Gertzman AA. Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair. Cell Tissue Bank. 2011;12(2):135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg. 2005;116(5):1263–75.

    Article  CAS  PubMed  Google Scholar 

  323. Costa A, Naranjo JD, Londono R, Badylak SF. Biologic scaffolds. CSH Perspect Med. 2017;7(9):a025676.

    Google Scholar 

  324. Sahoo S, DeLozier KR, Dumm RA, Rosen MJ, Derwin KA. Fiber-reinforced dermis graft for ventral hernia repair. J Mech Behav Biomed. 2014;34:320–9.

    Article  CAS  Google Scholar 

  325. Ma JJ, Sahoo S, Baker AR, Derwin KA. Investigating muscle regeneration with a dermis/small intestinal submucosa scaffold in a rat full-thickness abdominal wall defect model. J Biomed Mater Res B. 2015;103(2):355–64.

    Article  Google Scholar 

  326. Jiang WW, Zhang J, Lv XF, Lu CG, Chen H, Xu XQ, Tang WB. Use of small intestinal submucosal and acellular dermal matrix grafts in giant omphaloceles in neonates and a rabbit abdominal wall defect model. J Pediatr Surg. 2016;51(3):368–73.

    Article  PubMed  Google Scholar 

  327. Liu ZN, Tang R, Zhou ZY, Song ZC, Wang HC, Gu Y. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats. PLoS One. 2011;6(5):e20520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Palmer EM, Beilfuss BA, Nagai T, Semnani RT, Badylak SF, van Seventer GA. Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa. Tissue Eng. 2002;8(5):893–900.

    Article  CAS  PubMed  Google Scholar 

  329. Cordero A, Hernandez-Gascon B, Pascual G, Bellon JM, Calvo B, Pena E. Biaxial mechanical evaluation of absorbable and nonabsorbable synthetic surgical meshes used for hernia repair: physiological loads modify anisotropy response. Ann Biomed Eng. 2016;44(7):2181–8.

    Article  CAS  PubMed  Google Scholar 

  330. Wang ZL, Wu SZ, Li ZF, Guo JH, Zhang Y, Pi JK, Hu JG, Yang XJ, Huang FG, Xie HQ. Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. J Biomat Sci Polym E. 2018;29(6):663–82.

    Article  CAS  Google Scholar 

  331. Tang R, Wang X, Zhang HY, Liang X, Feng XY, Zhu XQ, Lu XW, Wu F, Liu ZN. Promoting early neovascularization of SIS-repaired abdominal wall by controlled release of bioactive VEGF. RSC Adv. 2018;8(9):4548–60.

    Article  CAS  Google Scholar 

  332. Wang L, La DM, Yang B, Jiang ZP, Zhang YC, Zhou J, Lai W, Chen S. Reconstruction of abdominal wall defects using small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor. Acta Cir Bras. 2014;29(4):252–60.

    Article  CAS  PubMed  Google Scholar 

  333. Zhou HY, Zhang J, Yan RL, Wang QA, Fan LY, Zhang Q, Wang WJ, Hu ZQ. Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation a promising biological material to address the need for contaminated defect repair. Ann Surg. 2011;253(5):1033–41.

    Article  PubMed  Google Scholar 

  334. Kankala RK, Zhu K, Sun XN, Liu CG, Wang SB, Chen AZ. Cardiac tissue engineering on the nanoscale. ACS Biomater Sci Eng. 2018;4(3):800–18.

    Article  CAS  PubMed  Google Scholar 

  335. Godier-Furnemont AFG, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang GP, Hudson B, Homma S, Vunjak-Novakovic G. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A. 2011;108(19):7974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Jones L. Heart Disease and Stroke Statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (vol 119, pg e21, 2009). Circulation. 2011;124(16):E424.

    Google Scholar 

  337. Muller P, Lemcke H, David R. Stem cell therapy in heart diseases - cell types, mechanisms and improvement strategies. Cell Physiol Biochem. 2018;48(6):2607–55.

    Article  PubMed  Google Scholar 

  338. Perez-Estenaga I, Prosper F, Pelacho B. Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? Int J Mol Sci. 2018;19(10):3236.

    Article  PubMed Central  Google Scholar 

  339. Hashizume R, Hong Y, Takanari K, Fujimoto KL, Tobita K, Wagner WR. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials. 2013;34(30):7353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Lin YD, Ko MC, Wu ST, Li SF, Hu JF, Lai YJ, Harn HIC, Laio IC, Yeh ML, Yeh HI, Tang MJ, Chang KC, Su FC, Wei EIH, Lee ST, Chen JH, Hoffman AS, Wu WT, Hsieh PCH. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater Sci. 2014;2(4):567–80.

    Article  CAS  PubMed  Google Scholar 

  341. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Boissel CS, Tartour E, Desnos M, Larghero J. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.

    Article  PubMed  Google Scholar 

  342. Becker M, Maring JA, Oberwallner B, Kappler B, Klein O, Falk V, Stamm C. Processing of human cardiac tissue toward extracellular matrix self-assembling hydrogel for in vitro and in vivo applications. J Vis Exp. 2017;130:56419.

    Google Scholar 

  343. Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells. 2014;3(1):1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Sanchez PL, Fernandez-Santos ME, Costanza S, Climent AM, Moscoso I, Gonzalez-Nicolas MA, Sanz-Ruiz R, Rodriguez H, Kren SM, Garrido G, Escalante JL, Bermejo J, Elizaga J, Menarguez J, Yotti R, Perez del Villar C, Espinosa MA, Guillem MS, Willerson JT, Bernad A, Matesanz R, Taylor DA, Fernandez-Aviles F. Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials. 2015;61:279–89.

    Article  CAS  PubMed  Google Scholar 

  345. Oberwallner B, Brodarac A, Choi YH, Saric T, Anic P, Morawietz L, Stamm C. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A. 2014;102(9):3263–72.

    Article  PubMed  Google Scholar 

  346. Kappler B, Anic P, Becker M, Bader A, Klose K, Klein O, Oberwallner B, Choi YH, Falk V, Stamm C. The cytoprotective capacity of processed human cardiac extracellular matrix. J Mater Sci Mater Med. 2016;27(7):120.

    Article  PubMed  Google Scholar 

  347. Becker M, Maring JA, Schneider M, Martin AXH, Seifert M, Klein O, Braun T, Falk V, Stamm C. Towards a novel patch material for cardiac applications: tissue-specific extracellular matrix introduces essential key features to decellularized amniotic membrane. Int J Mol Sci. 2018;19(4):1032.

    Article  PubMed Central  Google Scholar 

  348. Johnson TD, Hill RC, Dzieciatkowska M, Nigam V, Behfar A, Christman KL, Hansen KC. Quantification of decellularized human myocardial matrix: a comparison of six patients. Proteomics Clin Appl. 2016;10(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  349. Wang RM, Johnson TD, He JJ, Rong ZL, Wong M, Nigam V, Behfar A, Xu Y, Christman KL. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials. 2017;129:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Guhathakurta S, Mathapati S, Bishi DK, Rallapalli S, Cherian KM. Nanofiber-reinforced myocardial tissue-construct as ventricular assist device. Asian Cardiovasc Thorac Ann. 2014;22(8):935–43.

    Article  PubMed  Google Scholar 

  351. Di Meglio F, Nurzynska D, Romano V, Miraglia R, Belviso I, Sacco AM, Barbato V, Di Gennaro M, Granato G, Maiello C, Montagnani S, Castaldo C. Optimization of human myocardium decellularization method for the construction of implantable patches. Tissue Eng Part C Med. 2017;23(9):525–39.

    Article  Google Scholar 

  352. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, Gaudette GR, Ott HC. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016;118(1):56–72.

    Article  CAS  PubMed  Google Scholar 

  353. van Steenberghe M, Schubert T, Xhema D, Bouzin C, Guiot Y, Duisit J, Abdelhamid K, Gianello P. Enhanced vascular regeneration with chemically/physically treated bovine/human pericardium in rodents. J Surg Res. 2018;222:167–79.

    Article  PubMed  Google Scholar 

  354. Madani MM. A clinical commentary on the article “patient-to-patient variability in autologous pericardial matrix scaffolds for cardiac repair”. J Cardiovasc Transl. 2011;4(5):557–8.

    Article  Google Scholar 

  355. Vinci MC, Tessitore G, Castiglioni L, Prandi F, Soncini M, Santoro R, Consolo F, Colazzo F, Micheli B, Sironi L, Polvani G, Pesce M. Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS One. 2013;8(5):0064769.

    Article  Google Scholar 

  356. Mirsadraee S, Wilcox HE, Korossis SA, Kearney JN, Watterson KG, Fisher J, Ingham E. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng. 2006;12(4):763–73.

    Article  CAS  PubMed  Google Scholar 

  357. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, Khademhosseini A, Baharvand H, Aghdami N. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014;35(3):970–82.

    Article  CAS  PubMed  Google Scholar 

  358. Perea-Gil I, Galvez-Monton C, Prat-Vidal C, Jorba I, Segu-Verges C, Roura S, Soler-Botija C, Iborra-Egea O, Revuelta-Lopez E, Fernandez MA, Farre R, Navajas D, Bayes-Genis A. Head-to-head comparison of two engineered cardiac grafts for myocardial repair: from scaffold characterization to pre-clinical testing. Sci Rep. 2018;8(1):6708.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J, Ingham E. Biocompatibility of acellular human pericardium. J Surg Res. 2007;143(2):407–14.

    Article  CAS  PubMed  Google Scholar 

  360. van Steenberghe M, Schubert T, Bouzin C, Caravaggio C, Guiot Y, Xhema D, Gianello P. Enhanced vascular biocompatibility and remodeling of decellularized and secured xenogeneic/allogeneic matrices in a porcine model. Eur Surg Res. 2018;59(1-2):58–71.

    Article  PubMed  Google Scholar 

  361. Galvez-Monton C, Bragos R, Soler-Botija C, Diaz-Guemes I, Prat-Vidal C, Crisostomo V, Sanchez-Margallo FM, Llucia-Valldeperas A, Bogonez-Franco P, Perea-Gil I, Roura S, Bayes-Genis A. Noninvasive assessment of an engineered bioactive graft in myocardial infarction: impact on cardiac function and scar healing. Stem Cells Transl Med. 2017;6(2):647–55.

    Article  CAS  PubMed  Google Scholar 

  362. Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Naso F, Gandaglia A. Different approaches to heart valve decellularization: a comprehensive overview of the past 30 years. Xenotransplantation. 2018;25(1):e12354.

    Article  Google Scholar 

  364. Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, Kleczka C, Ciubotaru A, Haverich A. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation. 2002;106(12 Suppl 1):I63–8.

    PubMed  Google Scholar 

  365. Gerson CJ, Elkins RC, Goldstein S, Heacox AE. Structural integrity of collagen and elastin in SynerGraft(R) decellularized-cryopreserved human heart valves. Cryobiology. 2012;64(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  366. Jiao T, Clifton RJ, Converse GL, Hopkins RA. Measurements of the effects of decellularization on viscoelastic properties of tissues in ovine, baboon, and human heart valves. Tissue Eng Part A. 2012;18(3-4):423–31.

    Article  CAS  PubMed  Google Scholar 

  367. Weymann A, Schmack B, Okada T, Soos P, Istok R, Radovits T, Straub B, Barnucz E, Loganathan S, Patzold I, Chaimow N, Schies C, Korkmaz S, Tochtermann U, Karck M, Szabo G. Reendothelialization of human heart valve neoscaffolds using umbilical cord-derived endothelial cells. Circ J. 2013;77(1):207–16.

    Article  PubMed  Google Scholar 

  368. Vafaee T, Thomas D, Desai A, Jennings LM, Berry H, Rooney P, Kearney J, Fisher J, Ingham E. Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate. J Tissue Eng Regen Med. 2018;12(2):E841–53.

    Article  CAS  PubMed  Google Scholar 

  369. Rieder E, Seebacher G, Kasimir MT, Eichmair E, Winter B, Dekan B, Wolner E, Simon P, Weigel G. Tissue engineering of heart valves - decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation. 2005;111(21):2792–7.

    Article  PubMed  Google Scholar 

  370. Iop L, Paolin A, Aguiari P, Trojan D, Cogliati E, Gerosa G. Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: in vitro assessment before clinical translation. J Cardiovasc Transl. 2017;10(2):93–103.

    Article  Google Scholar 

  371. Iop L, Renier V, Naso F, Piccoli M, Bonetti A, Gandaglia A, Pozzobon M, Paolin A, Ortolani F, Marchini M, Spina M, De Coppi P, Sartore S, Gerosa G. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials. 2009;30(25):4104–16.

    Article  CAS  PubMed  Google Scholar 

  372. Dainese L, Guarino A, Burba I, Esposito G, Pompilio G, Polvani G, Rossini A. Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. J Heart Valve Dis. 2012;21(1):125–34.

    PubMed  Google Scholar 

  373. Koenig F, Lee JS, Akra B, Hollweck T, Wintermantel E, Hagl C, Thierfelder N. Is transcatheter aortic valve implantation of living tissue-engineered valves feasible? An in vitro evaluation utilizing a decellularized and reseeded biohybrid valve. Artif Organs. 2016;40(8):727–37.

    Article  CAS  PubMed  Google Scholar 

  374. Kamel KS, Beckert LE, Stringer MD. Novel insights into the elastic and muscular components of the human trachea. Clin Anat. 2009;22(6):689–97.

    Article  PubMed  Google Scholar 

  375. Kanzaki M, Yamato M, Hatakeyama H, Kohno C, Yang J, Umemoto T, Kikuchi A, Okano T, Onuki T. Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng. 2006;12(5):1275–83.

    Article  PubMed  Google Scholar 

  376. Yamashita M, Kanemaru S, Hirano S, Magrufov A, Tamaki H, Tamura Y, Kishimoto M, Omori K, Nakamura T, Ito J. Tracheal regeneration after partial resection: a tissue engineering approach. Laryngoscope. 2007;117(3):497–502.

    Article  PubMed  Google Scholar 

  377. Jungebluth P, Go T, Asnaghi A, Bellini S, Martorell J, Calore C, Urbani L, Ostertag H, Mantero S, Conconi MT, Macchiarini P. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J Thorac Cardiovasc Surg. 2009;138(3):586–93.

    Article  CAS  PubMed  Google Scholar 

  378. Walles T, Giere B, Hofmann M, Schanz J, Hofmann F, Mertsching H, Macchiarini P. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128(6):900–6.

    Article  PubMed  Google Scholar 

  379. Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005;18(6):727–34.

    Article  CAS  PubMed  Google Scholar 

  380. Jungebluth P, Bader A, Baiguera S, Moller S, Jaus M, Lim ML, Fried K, Kjartansdottir KR, Go T, Nave H, Harringer W, Lundin V, Teixeira AI, Macchiarini P. The concept of in vivo airway tissue engineering. Biomaterials. 2012;33(17):4319–26.

    Article  CAS  PubMed  Google Scholar 

  381. Park JW, Pavcnik D, Uchida BT, Timmermans H, Corless CL, Yamakado K, Yamada K, Keller FS, Rosch J. Small intestinal submucosa covered expandable Z stents for treatment of tracheal injury: an experimental pilot study in swine. J Vasc Interv Radiol. 2000;11(10):1325–30.

    Article  CAS  PubMed  Google Scholar 

  382. Gubbels SP, Richardson M, Trune D, Bascom DA, Wax MK. Tracheal reconstruction with porcine small intestine submucosa in a rabbit model. Otolaryng Head Neck. 2006;134(6):1028–35.

    Article  Google Scholar 

  383. Zhang LF, Liu Z, Cui PC, Zhao DQ, Chen WX. SIS with tissue-cultured allogenic cartilages patch tracheoplasty in a rabbit model for tracheal defect. Acta Otolaryngol. 2007;127(6):631–6.

    Article  PubMed  Google Scholar 

  384. John R, Douglas S. Gastrointestinal anatomy and physiology. Gastroenterology. 2015;148:1481–2.

    Google Scholar 

  385. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells with nanofibrous scaffolds: effect of fiber orientation on cell adhesion, proliferation, and functional gene expression. J Biomed Mater Res A. 2015;103:2236–50.

    Article  CAS  PubMed  Google Scholar 

  387. Montgomery RK, Mulberg AE, Grand RJ. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology. 1999;116:702–31.

    Article  CAS  PubMed  Google Scholar 

  388. Hussey GS, Cramer MC, Badylak SF. Extracellular matrix bioscaffolds for building gastrointestinal tissue. Cell Mol Gastroenterol Hepatol. 2018;5(1):1–13.

    Article  PubMed  Google Scholar 

  389. Goke M, Podolsky DK. Regulation of the mucosal epithelial barrier. Baillieres Clin Gastroenterol. 1996;10:393–405.

    Article  CAS  PubMed  Google Scholar 

  390. Goke M, Zuk A, Podolsky DK. Regulation and function of extracellular matrix intestinal epithelial restitution in vitro. Am J Phys. 1996;271:G729–40.

    CAS  Google Scholar 

  391. Shimshoni D, Yablecovitch L, Baram L. ECM remodelling in IBD: innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut. 2015;64:367–72.

    Article  CAS  PubMed  Google Scholar 

  392. Craig R, Amernic J. A privatization success story: accounting and narrative expression over time. Account Audit Account J. 2008;21:1085–115.

    Article  Google Scholar 

  393. Speca S, Giusti I, Rieder F, Latella G. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol. 2012;18:3635–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Teller IC, Beaulieu JF. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med. 2001;3:1–18.

    Article  CAS  PubMed  Google Scholar 

  395. Worthley DL, Giraud AS, Wang TC. The extracellular matrix in digestive cancer. Cancer Microenviron. 2010;3:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World J Biol Chem. 2014;5:355–76.

    Article  PubMed  PubMed Central  Google Scholar 

  397. Weaver AM, Yamaguchi H, Yoshida N, Takanashi M, Ito Y, Fukami K, Yanagihara K, Yashiro M, Sakai R. Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS ONE. 2014;9:e85485.

    Article  Google Scholar 

  398. Levitt MA, Dickie B, Pena A. Evaluation and treatment of the patient with Hirschsprung disease who is not doing well after a pull-through procedure. Semin Pediatr Surg. 2010;19:146–53.

    Article  PubMed  Google Scholar 

  399. Beyer-Berjot L, Joly F, Maggiori L, Corcos O, Bouhnik Y, Bretagnol F, Panis Y. Segmental reversal of the small bowel can end permanent parenteral nutrition dependency. Ann Surg. 2012;256:739–44.

    Article  PubMed  Google Scholar 

  400. Sampietro GM, Corsi F, Maconi G, Ardizzone S, Frontali A, Corona A, Porro GB, Foschi D. Prospective study of long-term results and prognostic factors after conservative surgery for small bowel Crohn’s disease. Clin Gastroenterol Hepatol. 2009;7:183–91.

    Article  PubMed  Google Scholar 

  401. Braghetto I, Korn O, Valladares H, Debandi A, Diaz JC, Brunet L. Segmental reversal of the small bowel can end permanent parenteral nutrition dependency: an experience of 38 adults with short bowel syndrome. Int Surg. 2011;96:95–103.

    Article  PubMed  Google Scholar 

  402. Songun I, Putter H, Kranenbarg EM-K, Sasako M, van de Velde CJH. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010;11:439–49.

    Article  PubMed  Google Scholar 

  403. Pearson RK. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. Yearbook Gastroenterol. 2010;2010:91–3.

    Article  Google Scholar 

  404. Zhou Y, Zhao Q, Wang M. Coaxial electrospray for cell encapsulation and delivery in cell-based tissue engineering. Front Bioeng Biotechnol. 2015;4:14–7.

    Google Scholar 

  405. Liu H, Li X, Zhou G, Fan H, Fan Y. Electro spun sulfate silk fibro in a no fibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32:3784–93.

    Article  CAS  PubMed  Google Scholar 

  406. Kim HI, Ishihara K, Lee S, Seo JH, Kim HY, Suh D, Kim MU, Konno T, Takai M, Seo JS. Tissue response to poly fu lactica ckd-based blend with phospholipid polymer for biodegradable cardiovasc uars tents. Biomaterials. 2011;32:2241–7.

    Article  CAS  PubMed  Google Scholar 

  407. Wang CC, Yang KC, Lin KH, Liu HC, Lin FH. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32:7118–26.

    Article  CAS  PubMed  Google Scholar 

  408. Sreerekha PR, Menon D, Nair SV, Chennazhi KP. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro. Tissue Eng Part A. 2013;19:849–59.

    Article  CAS  PubMed  Google Scholar 

  409. Chen G, Xia Y, Lu X, Zhou X, Zhang F, Gu N. Effects of surface functionalization of PLGA membranes for guided bone regeneration on proliferation and behavior of osteoblasts. J Biomed Mater Res A. 2013;101:44–53.

    Article  PubMed  Google Scholar 

  410. Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester carbonate urethane) Jure a thermoplastic elastomers for tissue engineering scaffolds. Biomaterials. 2010;31:4249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Jeong CG, Hollister SJ. Mechanical, permeability, and degradation properties of 3D designed poly(1, 8octanediol-co-citrate) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;93:141–9.

    PubMed  PubMed Central  Google Scholar 

  412. Lu G, Sheng B, Wang G, Wei Y, Gong Y, Zhang X, Zhang L. Controlling the degradation of covalently cross-linked carboxymethyl chitosan utilizing bimodal molecular weight distribution. J Biomater Appl. 2009;23:435–51.

    Article  CAS  PubMed  Google Scholar 

  413. Pu XM, Yao QQ, Yang Y, Sun ZZ, Zhang QQ. Invitro degradation of three-dimensional chitosan/apatite composite rods prepared via insitu precipitation. Int J Biol Macromol. 2012;51:868–73.

    Article  CAS  PubMed  Google Scholar 

  414. White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012;8:61–71.

    Article  CAS  PubMed  Google Scholar 

  415. Nguyen LH, Kudva AK, Saxena NS, Roy K. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stemcell population using a multi-layered hydrogel. Biomaterials. 2011;32:6946–52.

    Article  CAS  PubMed  Google Scholar 

  416. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    Article  CAS  PubMed  Google Scholar 

  417. Harley BA, Kim HD, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J. 2008;95:4013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng Part A. 2011;17:1201–8.

    Article  CAS  PubMed  Google Scholar 

  419. Bitar KN, Zakhem E. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr Opin Biotechnol. 2013;24:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Beattie AJ, Gilbert TW, Guyot JP, Yates AJ, Badylak SF. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng Part A. 2009;15:1119–25.

    Article  CAS  PubMed  Google Scholar 

  421. Dziki JL, Sicari BM, Wolf MT, Cramer MC, Badylak SF. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Eng Part A. 2016;22:1129–39.

    Article  CAS  PubMed  Google Scholar 

  422. Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A. 2011;17:2435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A. 2014;20:313–23.

    Article  CAS  PubMed  Google Scholar 

  424. Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 2015;43:577–92.

    Article  PubMed  Google Scholar 

  425. Galvez-Monton C, Fernandez-Figueras MT, Marti M, Soler-Botija C, Roura S, Perea-Gil I, Prat-Vidal C, Llucia-Valldeperas A, Raya A, Bayes-Genis A. Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Res Ther. 2015;6:108.

    Article  PubMed  PubMed Central  Google Scholar 

  426. Zhang X. Functional neovascularization in tissue engineering with porcine acellular dermal matrix and human umbilical vein endothelial cells. Tissue Eng Part C Methods. 2011;17:423–33.

    Article  PubMed  Google Scholar 

  427. Dziki J, Badylak S, Yabroudi M, Sicari B, Ambrosio F, Stearns K, Turner N, Wyse A, Boninger ML, Brown EHP, Rubin JP. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med. 2016;1:16008.

    Article  PubMed  PubMed Central  Google Scholar 

  428. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis. Annu Rev Cell Dev Biol. 2006;22:287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6:1–11.

    Article  CAS  PubMed  Google Scholar 

  430. Huttenlocher A, Sandborg RP, Horwitz AF. Adhesion in cell migration. Curr Opin Cell Biol. 1995;7:697–706.

    Article  CAS  PubMed  Google Scholar 

  431. Cohen M, Joester D, Geiger B, Addadi L. Spatial and temporal sequence of events in cell adhesion: from molecular recognition to focal adhesion assembly. Chembiochem. 2004;5:1393–9.

    Article  CAS  PubMed  Google Scholar 

  432. Kovesi T, Rubin S. Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest. 2004;126:915–25.

    Article  PubMed  Google Scholar 

  433. Li Y, Zhu Y, Yu H, Chen L, Liu Y. Topographic characterization and protein quantification of esophageal basement membrane for scaffold design reference in tissue engineering. J Biomed Mater Res B Appl Biomater. 2012;100:265–73.

    Article  PubMed  Google Scholar 

  434. Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, Thapa A, Gilbert TW, Nieponice A. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.

    Article  PubMed  Google Scholar 

  435. Ackbar R, Ainoedhofer H, Gugatschka M, Saxena AK. Decellularized ovine esophageal mucosa for esophageal tissue engineering. Technol Health Care. 2012;20:215–23.

    Article  PubMed  Google Scholar 

  436. Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, Hou JL, Li XQ, Yang ZM, Xie HQ. Tissue engineered esophagus by mesenchymal stemcell seeding for esophageal repair in a canine model. J Surg Res. 2013;182:40–8.

    Article  CAS  PubMed  Google Scholar 

  437. Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C. Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med. 2009;52:330–51.

    Article  CAS  PubMed  Google Scholar 

  438. Richard S, Adrian P, Popescu A. Animal models in pressure ulcer research. J Spinal Cord Med. 2016;30:301–2.

    Google Scholar 

  439. Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63:1941–8.

    Article  PubMed  Google Scholar 

  440. Navissano M, Malan F, Carnino R, Battiston B. Neurotube for facial nerve repair. Microsurgery. 2005;25:268–71.

    Article  PubMed  Google Scholar 

  441. Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg. 2000;106:1036–45.

    Article  CAS  PubMed  Google Scholar 

  442. Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25:258–67.

    Article  PubMed  Google Scholar 

  443. Chamberlain LJ, Yannas IV, Arrizabalaga A, Hsu HP, Norregaard TV, Spector M. Early peripheral nerve healing in collagen and silicone tube implants: myofibroblasts and the cellular response. Biomaterials. 1998;19:1393–403.

    Article  CAS  PubMed  Google Scholar 

  444. Merle M, Dellon AL, Campbell JN, Chang PS. Complications from silicon-polymer intubulation of nerves. Microsurgery. 1989;10:130–3.

    Article  CAS  PubMed  Google Scholar 

  445. Ribatti D, Conconi MT, Nico B, Baiguera S, Corsi P, Parnigotto PP, Nussdorfer GG. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane. Brain Res. 2003;989:9–15.

    Article  CAS  PubMed  Google Scholar 

  446. Zhang XY, Xue H, Liu JM, Chen D. Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair. J Biomed Mater Res A. 2012;100:578–87.

    Article  PubMed  Google Scholar 

  447. Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33:3539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Wang H, Lin XF, Wang LR, Lin YQ, Wang JT, Liu WY, Zhu GQ, Braddock M, Zhong M, Zheng MH. Decellularization technology in CNS tissue repair. Expert Rev Neurother. 2015;15:493–500.

    Article  CAS  PubMed  Google Scholar 

  449. Zilic L, Wilshaw SP, Haycock JW. Decellularisation and histological characterisation of porcine peripheral nerves. Biotechnol Bioeng. 2016;113(9):2041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Meiqin C, Tengchao H, Bo H, Ying G. Role of demyelination efficiency within acellular nerve scaffolds during nerve regeneration across peripheral defects. Biomed Res Int. 2017;2017:4606387.

    Google Scholar 

  451. Wang Q, Zhang C, Zhang L, Guo W, Feng G, Zhou S, Zhang Y, Tian T, Li Z, Huang F. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J Biomed Mater Res A. 2014;102:4301–8.

    PubMed  Google Scholar 

  452. Prest TA, Yeager E, Lopresti ST, Zygeiyte E, Martin MJ, Dong L, Gibson A, Olutoye OO, Brown BN, Cheetham J. Nerve-specific, xenogeneic extracellular matrix hydrogel promotes recovery following peripheral nerve injury. J Biomed Mater Res A. 2018;106:450–9.

    Article  CAS  PubMed  Google Scholar 

  453. Ren T, Faust A, van der Merwe Y, Xiao B, Johnson S, Kandakatla A, Gorantla VS, Badylak SF, Washington KM, Steketee MB. Fetal extracellular matrix nerve wraps locally improve peripheral nerve remodeling after complete transection and direct repair in rat. Sci Rep. 2018;8:4474.

    Article  PubMed  PubMed Central  Google Scholar 

  454. Means KR Jr, Rinker BD, Higgins JP, Payne SH Jr, Merrell GA, Wilgis EF. A multicenter, prospective, randomized, pilot study of outcomes for digital nerve repair in the hand using hollow conduit compared with processed allograft nerve. Hand. 2016;11:144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  455. Dellon AL. Management of peripheral nerve problems in the upper and lower extremity using quantitative sensory testing. Hand Clin. 1999;15:697–715.

    Article  CAS  PubMed  Google Scholar 

  456. Cho MS, Rinker BD, Weber RV, Chao JD, Ingari JV, Brooks D, Buncke GM. Functional outcome following nerve repair in the upper extremity using processed nerve allograft. J Hand Surg Am. 2012;37:2340–9.

    Article  PubMed  Google Scholar 

  457. Rinker BD, Ingari JV, Greenberg JA, Thayer WP, Safa B, Buncke GM. Outcomes of short-gap sensory nerve injuries reconstructed with processed nerve allografts from a multicenter registry study. J Reconstr Microsurg. 2015;31:384–90.

    Article  PubMed  Google Scholar 

  458. Papatheodorou LK, Williams BG, Sotereanos DG. Preliminary results of recurrent cubital tunnel syndrome treated with neurolysis and porcine extracellular matrix nerve wrap. J Hand Surg Am. 2015;40:987–92.

    Article  PubMed  Google Scholar 

  459. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    Article  CAS  PubMed  Google Scholar 

  460. Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm Sin B. 2018;8:756–66.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    Article  CAS  PubMed  Google Scholar 

  462. Maghsoudlou P, Totonelli G, Loukogeorgakis IG, Eaton SP, De S, Coppi PA. A decellularization methodology for the production of a natural acellular intestinal matrix. J Vis Exp. 2013;80:50658.

    Google Scholar 

  463. Meng F, Modo M, Badylak SF. Biologic scaffold for CNS repair. Regen Med. 2014;9:367–83.

    Article  CAS  PubMed  Google Scholar 

  464. Choi J, Kim JH, Jang JW, Kim HJ, Choi SH, Kwon SW. Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration. Neural Regen Res. 2018;13:1796–803.

    Article  PubMed  PubMed Central  Google Scholar 

  465. Carriel V, Alaminos M, Garzon I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother. 2014;14:301–18.

    Article  CAS  PubMed  Google Scholar 

  466. Lee SK, Wolfe SW. Peripheral nerve injury and repair, peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000;8:243–52.

    Article  CAS  PubMed  Google Scholar 

  467. Johnson PJ, Wood WD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg. 2013;45:122–35.

    Article  Google Scholar 

  468. Tang P, Chauhan A. Decellular nerve allografts. J Am Acad Orthop Surg. 2015;23:641–7.

    Article  PubMed  Google Scholar 

  469. Moore AM, MacEwan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, Mackinnon SE, Johnson PJ. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44:221–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, B., Bi, X., He, Y., Li, X. (2021). Applications of Decellularized Materials for Tissue Repair. In: Li, X., Xie, H. (eds) Decellularized Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6962-7_4

Download citation

Publish with us

Policies and ethics