Skip to main content

Overview of Decellularized Materials for Tissue Repair and Organ Replacement

  • Chapter
  • First Online:
Book cover Decellularized Materials

Abstract

Decellularized materials (DMs) including decellularized tissues and organs are derived from natural tissues and organs through decellularization process removing cells and other antigenic components. They keep main components of natural ECM, exhibiting satisfactory bioactivities and being widely applied in tissue repair. Especially, the remain of macro and microstructures of native organs to some extent provides them superiorities on organ replacement. Hence, they have attracted wide attention, and further studies about them would be conducted. In this chapter, the background, preparation, and composition and structure of DMs were introduced. Then, the degradation of DMs and their mechanisms of promoting tissue regeneration/organ replacement was discussed in detail through two aspects including: (1) initiating relatively low host tissue response to provide appropriate regeneration microenvironment; (2) containing bioactive factors to recruit endogenous stems/progenitor cells and promote matrix production and angiogenesis. In addition, decellularized tissues and their applications, as well as decellularized organs and their recellularization were briefly introduced. Finally, the structure and main content of this book were expatiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annu Rev Med. 2007;58:299–312.

    Article  CAS  PubMed  Google Scholar 

  2. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70.

    Article  CAS  PubMed  Google Scholar 

  3. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg AW. Engineered tissue grafts: opportunities and challenges in regenerative medicine. Wiley Interdiscip Rev. 2012;4:207–20.

    CAS  Google Scholar 

  5. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  CAS  PubMed  Google Scholar 

  6. Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv. 2009;27:334–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater. 2009;21:3368–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–709.

    Article  CAS  PubMed  Google Scholar 

  9. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31:7892–927.

    Article  CAS  PubMed  Google Scholar 

  11. Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31:6279–308.

    Article  CAS  PubMed  Google Scholar 

  12. Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release. 2011;149:92–110.

    Article  CAS  PubMed  Google Scholar 

  13. Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials. 2012;33:6320–44.

    Article  CAS  PubMed  Google Scholar 

  14. Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    Article  CAS  PubMed  Google Scholar 

  15. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. In: Halper J, editor. Progress in heritable soft connective tissue diseases. Dordrecht: Springer; 2014. p. 31–47.

    Chapter  Google Scholar 

  16. Hubmacher D, Apte SS. The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol. 2013;25:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Multhaupt HAB, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016;97:28–40.

    Article  CAS  PubMed  Google Scholar 

  19. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roskelley CD, Srebrow A, Bissell MJ. A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr Opin Cell Biol. 1995;7:736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36:787–805.

    Article  CAS  PubMed  Google Scholar 

  23. Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21:1968–94.

    Article  CAS  PubMed  Google Scholar 

  24. Viswanathan P, Chirasatitsin S, Ngamkham K, Engler AJ, Battaglia G. Cell instructive microporous scaffolds through interface engineering. J Am Chem Soc. 2012;134:20103–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacob S, Dunphy JE. Transplantation of tissues. Philadelphia: Williams & Wilkins; 1955.

    Google Scholar 

  26. Gaffney L, Wrona EA, Freytes DO. Potential synergistic effects of stem cells and extracellular matrix scaffolds. ACS Biomater Sci Eng. 2018;4:1208–22.

    Article  CAS  Google Scholar 

  27. Liao JXB, Zhang RH, Fan YB, Xie HQ, Li XM. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B. 2020; https://doi.org/10.1039/D0TB01534B.

  28. Grillo HC, McKhann CF. The acceptance and evolution of dermal homografts freed of viable cells. Transplantation. 1964;2:48–59.

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, Kobayashi H, Kishida A, Mochizuki M. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis. 2009;15:2022–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31:3590–5.

    Article  CAS  PubMed  Google Scholar 

  31. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisato T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol. 2008;83:943–9.

    Article  CAS  Google Scholar 

  33. Patel N, Solanki E, Picciani R, Cavett V, Caldwell-Busby JA, Bhattacharya SK. Strategies to recover proteins from ocular tissues for proteomics. Proteomics. 2008;8:1055–70.

    Article  CAS  PubMed  Google Scholar 

  34. Meezan E, Hjelle JT, Brendel K, Carlson EC. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975;17:1721–32.

    Article  CAS  PubMed  Google Scholar 

  35. Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther. 2017;12:233–46.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79:254–62.

    Article  PubMed  Google Scholar 

  37. Hoshiba T, Lu H, Yamada T, Kawazoe N, Tateishi T, Chen G. Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnol Prog. 2011;27:788–95.

    Article  CAS  PubMed  Google Scholar 

  38. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10:1346–58.

    Article  CAS  PubMed  Google Scholar 

  39. Singh K, Gopinathan A, Sangeetha P, Kumar N, Singh KP, Raina OK. Development and clinical application of decellularized porcine SIS and cornea for the repair of corneal defects in animals. Indian J Anim Sci. 2016;86:1391–5.

    Google Scholar 

  40. Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795:44–54.

    Article  CAS  PubMed  Google Scholar 

  41. Ribatti D, Conconi MT, Nico B, Baiguera S, Corsi P, Parnigotto PP, Nussdorfer GG. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane. Brain Res. 2003;989:9–15.

    Article  CAS  PubMed  Google Scholar 

  42. Conklin BS, Richter ER, Kreutziger KL, Zhong DS, Chen C. Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys. 2002;24:173–83.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura N, Kimura T, Kishida A. Overview of the development, applications, and future perspectives of decellularized tissues and organs. ACS Biomater Sci Eng. 2016;3:1236–44.

    Article  PubMed  Google Scholar 

  44. Lumpkins SB, Pierre N, McFetridge PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008;4:808–16.

    Article  PubMed  Google Scholar 

  45. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31:8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alhamdani MSS, Schroder C, Werner J, Giese N, Bauer A, Hoheisel JD. Single-step procedure for the isolation of proteins at near-native conditions from mammalian tissue for proteomic analysis on antibody microarrays. J Proteome Res. 2010;9:963–71.

    Article  CAS  PubMed  Google Scholar 

  47. Brooker JE, Camison LB, Bykowski MR, Hurley ET, Yerneni SS, Campbell PG, Weiss LE, Mooney MP, Cray J, Gilbert JR, Cooper GM, Losee JE. Reconstruction of a calvarial wound complicated by infection: comparing the effects of biopatterned bone morphogenetic protein 2 and vascular endothelial growth factor. J Craniofac Surg. 2019;30:260–4.

    Article  PubMed  Google Scholar 

  48. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.

    Article  CAS  PubMed  Google Scholar 

  49. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang T. Development of acellular matrix stromal scaffolds. Chin J Spine Spinal Cord. 2010;2010:782–5.

    Google Scholar 

  51. Xiang JX, Zheng XL, Gao R, Wu WQ, Zhu XL, Li JH, Lv Y. Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering. Hepatobiliary Pancreat Dis Int. 2015;14:502–8.

    Article  PubMed  Google Scholar 

  52. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230–41.

    Article  CAS  PubMed  Google Scholar 

  53. Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials. 2014;35:3607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21:243–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sano MB, Neal RE, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sarig U, Au-Yeung GCT, Wang Y, Bronshtein T, Dahan N, Boey FYC, Venkatraman SS, Machluf M. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng A. 2012;18:2125–37.

    Article  CAS  Google Scholar 

  57. Ozlu B, Ergin M, Budak S, Tunali S, Yildirim N, Erisken C. A bioartificial rat heart tissue: perfusion decellularization and characterization. Int J Artif Organs. 2019;42:757–64.

    Article  CAS  PubMed  Google Scholar 

  58. Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014;42:1517–27.

    Article  PubMed  Google Scholar 

  59. Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, Kiefer KM, Ward HH, Wandinger-Ness A, Miller WM, Zhang ZJ, Abecassis MM, Wertheim JA. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015;15:64–75.

    Article  CAS  PubMed  Google Scholar 

  60. Yoganarasimha S, Trahan WR, Best A, Bowlin GL, Kitten TO, Moon PC, Madurantakam PA. Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds. Tissue Eng Pt C Methods. 2014;20:714–23.

    Article  CAS  Google Scholar 

  61. Hong JY, Seo Y, Davaa G, Kim H-W, Kim SH, Hyun JK. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 2020;101:357–71.

    Article  CAS  PubMed  Google Scholar 

  62. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. 2008;29:4775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832:866–75.

    Article  CAS  PubMed  Google Scholar 

  65. Piazuelo E, Jimenez P, Lanas A, Garcia A, Esteva F, Sainz R. Platelet-derived growth factor and epidermal growth factor play a major role in human colonic fibroblast repair activities. Eur Surg Res. 2000;32:191–6.

    Article  CAS  PubMed  Google Scholar 

  66. Wang T, Feng ZQ, Leach MK, Wu J, Jiang Q. Nanoporous fibers of type-I collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function. J Mater Chem B. 2013;1:339–46.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu J, He P, Lin L, Jones DR, Marchant RE. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules. 2012;13:706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res Pt B. 2004;71B:343–54.

    Article  CAS  Google Scholar 

  69. Bayrak A, Pruger P, Stock UA, Seifert M. Absence of immune responses with xenogeneic collagen and elastin. Tissue Eng A. 2013;19:1592–600.

    Article  CAS  Google Scholar 

  70. Willard JJ, Drexler JW, Das A, Roy S, Shilo S, Shoseyov O, Powell HM. Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng A. 2013;19:1507–18.

    Article  CAS  Google Scholar 

  71. Kim BS, Choi JS, Kim JD, Yoon HI, Choi YC, Cho YW. Human collagen isolated from adipose tissue. Biotechnol Prog. 2012;28:973–80.

    Article  CAS  PubMed  Google Scholar 

  72. Kuraitis D, Giordano C, Ruel M, Musaro A, Suuronen EJ. Exploiting extracellular matrix-stem cell interactions: a review of natural materials for therapeutic muscle regeneration. Biomaterials. 2012;33:428–43.

    Article  CAS  PubMed  Google Scholar 

  73. Crowley DC, Lau FC, Sharma P, Evans M, Guthrie N, Bagchi M, Bagchi D, Dey DK, Raychaudhuri SP. Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: a clinical trial. Int J Med Sci. 2009;6:312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tong T, Zhao W, Wu YQ, Chang Y, Wang QT, Zhang LL, Wei W. Chicken type II collagen induced immune balance of main subtype of helper T cells in mesenteric lymph node lymphocytes in rats with collagen-induced arthritis. Inflamm Res. 2010;59:369–77.

    Article  CAS  PubMed  Google Scholar 

  75. Anderson DEJ, Hinds MT. Extracellular matrix production and regulation in micropatterned endothelial cells. Biochem Biophys Res Commun. 2012;427:159–64.

    Article  CAS  PubMed  Google Scholar 

  76. Nystrom A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Investig. 2013;123:3498–509.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lv S, Dudek DM, Cao Y, Balamurali MM, Gosline J, Li HB. Designed biomaterials to mimic the mechanical properties of muscles. Nature. 2010;465:69–73.

    Article  CAS  PubMed  Google Scholar 

  78. Gray WR, Sandberg LB, Foster JA. Molecular model for elastin structure and function. Nature. 1973;246:461–6.

    Article  CAS  PubMed  Google Scholar 

  79. Brooke BS, Bayes-Genis A, Li DY. New insights into elastin and vascular disease. Trends Cardiovasc Med. 2003;13:176–81.

    Article  CAS  PubMed  Google Scholar 

  80. Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Eng Pt B Rev. 2012;18:203–17.

    Article  CAS  Google Scholar 

  81. Waterhouse A, Wise SG, Ng MKC, Weiss AS. Elastin as a nonthrombogenic biomaterial. Tissue Eng Pt B Rev. 2011;17:93–9.

    Article  CAS  Google Scholar 

  82. Simionescua DT, Lua QJ, Song Y, Lee JS, Rosenbalm TN, Kelley C, Vyavahare NR. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials. 2006;27:702–13.

    Article  Google Scholar 

  83. Daamen WF, Hafmans T, Veerkamp JH, van Kuppevelt TH. Isolation of intact elastin fibers devoid of microfibrils. Tissue Eng. 2005;11:1168–76.

    Article  CAS  PubMed  Google Scholar 

  84. Patel D, Menon R, Taite LJ. Self-assembly of elastin-based peptides into the ECM: the importance of integrins and the elastin binding protein in elastic fiber assembly. Biomacromolecules. 2011;12:432–40.

    Article  CAS  PubMed  Google Scholar 

  85. Tumova S, Woods A, Couchman JR. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000;32:269–88.

    Article  CAS  PubMed  Google Scholar 

  86. Migliorini E, Thakar D, Sadir R, Pleiner T, Baleux F, Lortat-Jacob H, Coche-Guerente L, Richter RP. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials. 2014;35:8903–15.

    Article  CAS  PubMed  Google Scholar 

  87. van der Smissen A, Samsonov S, Hintze V, Scharnweber D, Moeller S, Schnabelrauch M, Pisabarro MT, Anderegg U. Artificial extracellular matrix composed of collagen I and highly sulfated hyaluronan interferes with TGFβ1 signaling and prevents TGFβ1-induced myofibroblast differentiation. Acta Biomater. 2013;9:7775–86.

    Article  PubMed  Google Scholar 

  88. Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32:483–92.

    Article  CAS  PubMed  Google Scholar 

  89. Hortensius RA, Harley BAC. The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials. 2013;34:7645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salanga CL, Handel TM. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res. 2011;317:590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rueda P, Richart A, Recalde A, Gasse P, Vilar J, Guerin C, Lortat-Jacob H, Vieira P, Baleux F, Chretien F, Arenzana-Seisdedos F, Silvestre JS. Homeostatic and tissue reparation defaults in mice carrying selective genetic invalidation of CXCL12/proteoglycan interactions. Circulation. 2012;126:1882–U262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25.

    Article  CAS  PubMed  Google Scholar 

  93. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34(+) stem/progenitor cells to bone marrow. Blood. 2004;103:2981–9.

    Article  CAS  PubMed  Google Scholar 

  94. Ratliff BB, Ghaly T, Brudnicki P, Yasuda K, Rajdev M, Bank M, Mares J, Hatzopoulos AK, Goligorsky MS. Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent. Am J Physiol. 2010;299:F178–86.

    CAS  Google Scholar 

  95. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.

    Article  CAS  PubMed  Google Scholar 

  96. Tempel C, Gilead A, Neeman M. Hyaluronic acid as an anti-angiogenic shield in the preovulatory rat follicle. Biol Reprod. 2000;63:134–40.

    Article  CAS  PubMed  Google Scholar 

  97. Glynn JJ, Hinds MT. Bioactive anti-thrombotic modification of decellularized matrix for vascular applications. Adv Healthc Mater. 2016;5:1439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koobatian MT, Row S, Smith RJ Jr, Koenigsknecht C, Andreadis ST, Swartz DD. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials. 2016;76:344–58.

    Article  CAS  PubMed  Google Scholar 

  99. Dimitrievska S, Cai C, Weyers A, Balestrini JL, Lin T, Sundaram S, Hatachi G, Spiegel DA, Kyriakides TR, Miao J, Li G, Niklason LE, Linhardt RJ. Click-coated, heparinized, decellularized vascular grafts. Acta Biomater. 2015;13:177–87.

    Article  CAS  PubMed  Google Scholar 

  100. Netelenbos T, Drager AM, van het Hof B, Kessler FL, Delouis C, Huijgens PC, van den Born J, van Dijk W. Differences in sulfation patterns of heparan sulfate derived from human bone marrow and umbilical vein endothelial cells. Exp Hematol. 2001;29:884–93.

    Article  CAS  PubMed  Google Scholar 

  101. Netelenbos T, van den Born J, Kessler FL, Zweegman S, Merle PA, van Oostveen JW, Zwaginga JJ, Huijgens PC, Drager AM. Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia. 2003;17:175–84.

    Article  CAS  PubMed  Google Scholar 

  102. Cool SM, Nurcombe V. Heparan sulfate regulation of progenitor cell fate. J Cell Biochem. 2006;99:1040–51.

    Article  CAS  PubMed  Google Scholar 

  103. Dombrowski C, Song SJ, Chuan PY, Lim XH, Susanto E, Sawyer AA, Woodruff MA, Hutmacher DW, Nurcombe V, Cool SM. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 2009;18:661–70.

    Article  CAS  PubMed  Google Scholar 

  104. Pecly IM, Goncalves RG, Rangel EP, Takiya CM, Taboada FS, Martinusso CA, Pavao MS, Leite M Jr. Effects of low molecular weight heparin in obstructed kidneys: decrease of collagen, fibronectin and TGF-beta, and increase of chondroitin/dermatan sulfate proteoglycans and macrophage infiltration. Nephrol Dial Transplant. 2006;21:1212–22.

    Article  CAS  PubMed  Google Scholar 

  105. Abe W, Ikejima K, Lang T, Okumura K, Enomoto N, Kitamura T, Takei Y, Sato N. Low molecular weight heparin prevents hepatic fibrogenesis caused by carbon tetrachloride in the rat. J Hepatol. 2007;46:286–94.

    Article  CAS  PubMed  Google Scholar 

  106. Dong XC, Wei XF, Yi W, Gu CH, Kang XJ, Liu Y, Li Q, Yi DH. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci. 2009;20:2327–36.

    CAS  Google Scholar 

  107. Liao J, Wu S, Li K, Fan YB, Dunne N, Li XM. Peptide-modified bone repair materials: factors influencing osteogenic activity. J Biomed Mater Res A. 2019;107:1491–512.

    Article  CAS  PubMed  Google Scholar 

  108. Stevenson MD, Piristine H, Hogrebe NJ, Nocera TM, Boehm MW, Reen RK, Koelling KW, Agarwal G, Sarang-Sieminski AL, Gooch KJ. A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions. Acta Biomater. 2013;9:7651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.

    Article  CAS  PubMed  Google Scholar 

  110. Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci. 2010;67:2879–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38.

    Article  CAS  PubMed  Google Scholar 

  112. Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem. 2009;107:714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Suzuki S, Narita Y, Yamawaki A, Murase Y, Satake M, Mutsuga M, Okamoto H, Kagami H, Ueda M, Ueda Y. Effects of extracellular matrix on differentiation of human bone marrow-derived mesenchymal stem cells into smooth muscle cell lineage: utility for cardiovascular tissue engineering. Cells Tissues Organs. 2010;191:269–80.

    Article  CAS  PubMed  Google Scholar 

  114. Rooney JE, Gurpur PB, Burkin DJ. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2009;106:7991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smalheiser NR, Crain SM, Reid LM. Laminin as a substrate for retinal axons in vitro. Dev Brain Res. 1984;12:136–40.

    Article  CAS  Google Scholar 

  116. Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol. 2008;8:90.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cao JI, Sun CK, Zhao H, Xiao ZF, Chen B, Gao J, Zheng TZ, Wu W, Wu S, Wang JY, Dai JW. The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials. 2011;32:3939–48.

    Article  CAS  PubMed  Google Scholar 

  118. Stabenfeldt SE, Munglani G, Garcia AJ, LaPlaca MC. Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Eng A. 2010;16:3747–58.

    Article  CAS  Google Scholar 

  119. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645–51.

    Article  CAS  PubMed  Google Scholar 

  120. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17:153–62.

    Article  PubMed  Google Scholar 

  121. Martino MM, Briquez PS, Guc E, Tortelli F, Kilarski WW, Metzger S, Rice JJ, Kuhn GA, Muller R, Swartz MA, Hubbell JA. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 2014;343:885–8.

    Article  CAS  PubMed  Google Scholar 

  122. Macri L, Silverstein D, Clark RAF. Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev. 2007;59:1366–81.

    Article  CAS  PubMed  Google Scholar 

  123. Laslett AL, McFarlane JR, Hearn MTW, Risbridger GP. Requirement for heparan sulphate proteoglycans to mediate basic fibroblast growth factor (FGF-2)-induced stimulation of Leydig cell steroidogenesis. J Steroid Biochem Mol Biol. 1995;54:245–50.

    Article  CAS  PubMed  Google Scholar 

  124. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000;6:743–50.

    Article  CAS  PubMed  Google Scholar 

  125. Rahman S, Patel Y, Murray J, Patel KV, Sumathipala R, Sobel M, Wijelath ES. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 2005;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hussey GS, Pineda Molina C, Cramer MC, Tyurina YY, Tyurin VA, Lee YC, El-Mossier SO, Murdock MH, Timashev PS, Kagan VE, Badylak SF. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix. Biomaterials. 2020;6:eaay4361.

    CAS  Google Scholar 

  127. Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, Stolz DB, Badylak SF. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016;2:e1600502.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lv LL, Cao YH, Liu D, Xu M, Liu H, Tang RN, Ma KL, Liu BC. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci. 2013;9:1021–31.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, Muhhina J, Fondelli C, Gavrilova J, Chiesi A. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 2015;87:46–58.

    Article  CAS  PubMed  Google Scholar 

  130. Zara M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int J Mol Sci. 2019;20:2840.

    Article  CAS  PubMed Central  Google Scholar 

  131. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64:676–705.

    Article  PubMed  Google Scholar 

  132. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.

    Article  CAS  PubMed  Google Scholar 

  133. van Balkom BWM, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MAJ, Pegtel DM, Stoorvogel W, Wurdinger T, Verhaar MC. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121:3997–4006.

    Article  PubMed  Google Scholar 

  134. Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MC, Galimi F, Romagnoli R, Salizzoni M, Tetta C, Segoloni GP, Camussi G. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant. 2012;21:1305–20.

    Article  PubMed  Google Scholar 

  135. Zhang B, Yin YJ, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 2014;23:1233–44.

    Article  CAS  PubMed  Google Scholar 

  136. Distler JHW, Jungel A, Huber LC, Seemayer CA, Reich CF, Gay RE, Michel BA, Fontana A, Gay S, Pisetsky DS, Distler O. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci U S A. 2005;102:2892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019;10:529–38.

    Article  CAS  PubMed  Google Scholar 

  138. Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol. 2014;5:218.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, Bedelbaeva K, McIntosh D, Dewilde A, Braunhut SJ, Badylak SF. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng A. 2009;15:605–14.

    Article  CAS  Google Scholar 

  140. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–9.

    Article  CAS  PubMed  Google Scholar 

  141. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA. 2003;9:175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lopera HM, Griffiths LG. Antigen removal process preserves function of small diameter venous valved conduits, whereas SDS-decellularization results in significant valvular insufficiency. Acta Biomater. 2020;107:115–28.

    Article  Google Scholar 

  143. Takagi K, Fukunaga S, Nishi A, Shojima T, Yoshikawa K, Hori H, Akashi H, Aoyagi S. In vivo recellularization of plain decellularized xenografts with specific cell characterization in the systemic circulation: histological and immunohistochemical study. Artif Organs. 2006;30:233–41.

    Article  CAS  PubMed  Google Scholar 

  144. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One. 2014;9:e90406.

    Article  PubMed  PubMed Central  Google Scholar 

  145. De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials. 2015;41:122–31.

    Article  PubMed  Google Scholar 

  146. Navarro-Tableros V, Sanchez MBH, Figliolini F, Romagnoli R, Tetta C, Camussi G. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng A. 2015;21:1929–39.

    Article  CAS  Google Scholar 

  147. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  148. Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18:1229–37.

    Article  CAS  PubMed  Google Scholar 

  149. Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng A. 2009;15:1687–94.

    Article  CAS  Google Scholar 

  150. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D, Badylak SF. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials. 2001;22:2653–9.

    Article  CAS  PubMed  Google Scholar 

  152. Brinker MR, O'Connor DP. Exchange nailing of ununited fractures. J Bone Joint Surg. 2007;89:177–88.

    Article  PubMed  Google Scholar 

  153. Alberti KA, Xu Q. Biocompatibility and degradation of tendon-derived scaffolds. Regen Biomater. 2016;3:1–11.

    Article  CAS  PubMed  Google Scholar 

  154. Agrawal V, Kelly J, Tottey S, Daly KA, Johnson SA, Siu BF, Reing J, Badylak SF. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng A. 2011;17:3033–44.

    Article  CAS  Google Scholar 

  155. Cao Z, Dou C, Dong S. Scaffolding biomaterials for cartilage regeneration. J Nanomater. 2014;2014:1–8.

    Article  Google Scholar 

  156. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8:978–87.

    Article  CAS  PubMed  Google Scholar 

  157. Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng A. 2011;17:2435–43.

    Article  CAS  Google Scholar 

  158. Davis GE, Bayless KJ, Davis MJ, Meininger GA. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol. 2000;156:1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ghuman H, Mauney C, Donnelly J, Massensini AR, Badylak SF, Modo M. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 2018;80:66–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002;13:377–83.

    Article  CAS  PubMed  Google Scholar 

  161. Musarò A. The basis of muscle regeneration. Adv Biol. 2014;2014:612471.

    Article  Google Scholar 

  162. Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017;284:517–24.

    Article  CAS  PubMed  Google Scholar 

  163. Huard J, Li Y, Fu FH. Current concepts review - muscle injuries and repair: current trends in research. J Bone Joint Surg. 2002;84A:822–32.

    Article  Google Scholar 

  164. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol. 2010;298:R1173–87.

    CAS  Google Scholar 

  165. Wozniak AC, Kong JM, Bock E, Pilipowicz O, Anderson JE. Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve. 2005;31:283–300.

    Article  CAS  PubMed  Google Scholar 

  166. Charge SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  CAS  PubMed  Google Scholar 

  167. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534–51.

    Article  CAS  PubMed  Google Scholar 

  168. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm. 2013;2013:491497.

    Article  Google Scholar 

  169. Saclier M, Cuvellier S, Magnan M, Mounier R, Chazaud B. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J. 2013;280:4118–30.

    Article  CAS  PubMed  Google Scholar 

  170. Tidball JG, Dorshkind K, Wehling-Henricks M. Shared signaling systems in myeloid cell-mediated muscle regeneration. Development. 2014;141:1184–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Badylak SF, Dziki JL, Sicari BM, Ambrosio F, Boninger ML. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials. 2016;103:128–36.

    Article  CAS  PubMed  Google Scholar 

  172. Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 2013;9:4948–55.

    Article  CAS  PubMed  Google Scholar 

  173. Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10:1806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.

    Article  CAS  PubMed  Google Scholar 

  176. Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33:1771–81.

    Article  CAS  PubMed  Google Scholar 

  177. Sicari BM, Dziki JL, Siu BF, Medberry CJ, Dearth CL, Badylak SF. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials. 2014;35:8605–12.

    Article  CAS  PubMed  Google Scholar 

  178. Slivka PF, Dearth CL, Keane TJ, Meng FW, Medberry CJ, Riggio RT, Reing JE, Badylak SF. Fractionation of an ECM hydrogel into structural and soluble components reveals distinctive roles in regulating macrophage behavior. Biomater Sci. 2014;2:1521–34.

    Article  CAS  PubMed  Google Scholar 

  179. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001;71:1631–40.

    Article  CAS  PubMed  Google Scholar 

  180. Deng M, Tan J, Hu C, Hou T, Peng W, Liu J, Yu B, Dai Q, Zhou J, Yang Y, Dong R, Ruan C, Dong S, Xu J. Modification of PLGA Scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-beta-induced protein. Adv Healthc Mater. 2020;2020:e2000353.

    Article  Google Scholar 

  181. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006;12:2949–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152:135–9.

    Article  CAS  PubMed  Google Scholar 

  183. Sadtler K, Allen BW, Estrellas K, Housseau F, Pardoll DM, Elisseeff JH. The Scaffold immune microenvironment: biomaterial-mediated immune polarization in traumatic and nontraumatic applications. Tissue Eng A. 2017;23:1044–53.

    Article  CAS  Google Scholar 

  184. Keane TJ, Dziki J, Sobieski E, Smoulder A, Castleton A, Turner N, White LJ, Badylak SF. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J Crohn's Colitis. 2017;11:360–8.

    Google Scholar 

  185. Dziki JL, Sicari BM, Wolf MT, Cramer MC, Badylak SF. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Eng A. 2016;22:1129–39.

    Article  CAS  Google Scholar 

  186. Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, Li L, Bu H. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep. 2016;6:24779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wu RX, He XT, Zhu JH, Yin Y, Li X, Liu X, Chen FM. Modulating macrophage responses to promote tissue regeneration by changing the formulation of bone extracellular matrix from filler particles to gel bioscaffolds. Mater Sci Eng C. 2019;101:330–40.

    Article  CAS  Google Scholar 

  188. Adams GB, Scadden DT. A niche opportunity for stem cell therapeutics. Gene Ther. 2008;15:96–9.

    Article  CAS  PubMed  Google Scholar 

  189. Schulz C, von Andrian UH, Massberg S. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunol Res. 2009;44:160–8.

    Article  PubMed  Google Scholar 

  190. Yang ZJ, Xu SL, Chen B, Zhang SL, Zhang YL, Wei W, Ma DC, Wang LS, Zhu TB, Li CJ, Wang H, Cao KJ, Gao W, Huang J. Clinical and experimental pharmacology and physiology. J Mater Chem B. 2009;36:790–6.

    CAS  Google Scholar 

  191. Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163:268–85.

    Article  CAS  PubMed  Google Scholar 

  192. Mauney J, Olsen BR, Volloch V. Matrix remodeling as stem cell recruitment event: a novel in vitro model for homing of human bone marrow stromal cells to the site of injury shows crucial role of extracellular collagen matrix. Matrix Biol. 2010;29:657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kenichiro Tashiro GCS, Weeks B, Sasakig M, Martinn GR, Kleinman HK, Yamada Y. A synthetic peptide containing the IKVAV sequence from the a chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem. 1989;264:16174–82.

    Article  Google Scholar 

  194. Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao HX, Wang L, Wang H. Transformable nanomaterials as an artificial extracellular matrix for inhibiting tumor invasion and metastasis. ACS Nano. 2017;11:4086–96.

    Article  CAS  PubMed  Google Scholar 

  195. Dettin M, Bagno A, Gambaretto R, Iucci G, Conconi MT, Tuccitto N, Menti AM, Grandi C, Di Bello C, Licciardello A, Polzonetti G. Covalent surface modification of titanium oxide with different adhesive peptides: surface characterization and osteoblast-like cell adhesion. J Biomed Mater Res A. 2009;90A:35–45.

    Article  CAS  Google Scholar 

  196. Maquart F-X, Pasco S, Ramont L, Hornebeck W, Monboisse J-C. An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity: Implication in tumor invasion. Crit Rev Oncol Hematol. 2004;49:199–202.

    Article  PubMed  Google Scholar 

  197. Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29:1630–7.

    Article  CAS  PubMed  Google Scholar 

  198. Badylak SF, Park K, Peppas N, McCabe G, Yoder M. Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp Hematol. 2001;29:1310–8.

    Article  CAS  PubMed  Google Scholar 

  199. Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40:1101–10.

    Article  CAS  PubMed  Google Scholar 

  200. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta. 2004;1654:13–22.

    CAS  PubMed  Google Scholar 

  202. Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J. 2006;20:1739–41.

    Article  CAS  PubMed  Google Scholar 

  203. Agrawal V, Siu BF, Chao H, Hirschi KK, Raborn E, Johnson SA, Tottey S, Hurley KB, Medberry CJ, Badylak SF. Partial characterization of the Sox2+ cell population in an adult murine model of digit amputation. Tissue Eng A. 2012;18:1454–63.

    Article  CAS  Google Scholar 

  204. Tottey S, Corselli M, Jeffries EM, Londono R, Peault B, Badylak SF. Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells. Tissue Eng A. 2011;17:37–44.

    Article  CAS  Google Scholar 

  205. Tottey S, Johnson SA, Crapo PM, Reing JE, Zhang L, Jiang H, Medberry CJ, Reines B, Badylak SF. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 2011;32:128–36.

    Article  CAS  PubMed  Google Scholar 

  206. Wolf MT, Daly KA, Reing JE, Badylak SF. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials. 2012;33:2916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Cooper DK. A brief history of cross-species organ transplantation. PRO. 2012;25:49–57.

    Google Scholar 

  208. Robb KP, Shridhar A, Flynn LE. Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater Sci Eng. 2018;4:3627–43.

    Article  CAS  PubMed  Google Scholar 

  209. He F, Pei M. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. J Tissue Eng Regen Med. 2013;7:73–84.

    Article  PubMed  Google Scholar 

  210. Ng SL, Narayanan K, Gao S, Wan AC. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials. 2011;32:7571–80.

    Article  CAS  PubMed  Google Scholar 

  211. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng A. 2010;16:2565–80.

    Article  CAS  Google Scholar 

  212. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials. 2014;35:1914–23.

    Article  CAS  PubMed  Google Scholar 

  213. Zhang X, Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun. 2015;456:938–44.

    Article  CAS  PubMed  Google Scholar 

  214. Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther. 2017;8:133.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Tan MY, Zhi W, Wei RQ, Huang YC, Zhou KP, Tan B, Deng L, Luo JC, Li XQ, Xie HQ, Yang ZM. Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials. 2009;30:3234–40.

    Article  CAS  PubMed  Google Scholar 

  216. Fan MR, Gong M, Da LC, Bai L, Li XQ, Chen KF, Li-Ling J, Yang ZM, Xie HQ. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Biomed Mater. 2014;9:015012.

    Article  PubMed  Google Scholar 

  217. Poghosyan T, Gaujoux S, Vanneaux V, Bruneval P, Domet T, Lecourt S, Jarraya M, Sfeir R, Larghero J, Cattan P. In vitro development and characterization of a tissue-engineered conduit resembling esophageal wall using human and pig skeletal myoblast, oral epithelial cells, and biologic scaffolds. Tissue Eng A. 2013;19:2242–52.

    Article  CAS  Google Scholar 

  218. Tan B, Wang M, Chen X, Hou J, Chen X, Wang Y, Li-Ling J, Xie H. Tissue engineered esophagus by copper--small intestinal submucosa graft for esophageal repair in a canine model. Sci China Life Sci. 2014;57:248–55.

    Article  CAS  PubMed  Google Scholar 

  219. Sievert KD. Off-shelf commercially available acellular collagen matrix SIS (R) by cook for urethral reconstruction. Eur Urol Suppl. 2005;4:242.

    Article  Google Scholar 

  220. Liu Y, Ma W, Liu B, Wang Y, Chu J, Xiong G, Shen L, Long C, Lin T, He D, Butnaru D, Alexey L, Zhang Y, Zhang D, Wei G. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther. 2017;8:63.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sievert KD, et al. Homologous bladder acellular matrix graft (BAMG) in comparison to homologous small intestine submucosa (SIS) for the reconstruction of the canine bladder: in vivo functional and histologic evaluation. Eur Urol Suppl. 2005;4:206.

    Article  Google Scholar 

  222. Kajbafzadeh AM, Khorramirouz R, Sabetkish S, Ataei Talebi M, Akbarzadeh A, Keihani S. In vivo regeneration of bladder muscular wall using decellularized colon matrix: an experimental study. Pediatr Surg Int. 2016;32:615–22.

    Article  PubMed  Google Scholar 

  223. Sievert KD, Wefer J, Bakircioglu ME, Nunes L, Dahiya R, Tanagho EA. Heterologous acellular matrix graft for reconstruction of the rabbit urethra: histological and functional evaluation. J Urol. 2001;165:2096–102.

    Article  CAS  PubMed  Google Scholar 

  224. Kajbafzadeh AM, Khorramirouz R, Masoumi A, Keihani S, Nabavizadeh B. Decellularized human fetal intestine as a bioscaffold for regeneration of the rabbit bladder submucosa. J Pediatr Surg. 2018;53:1781–8.

    Article  PubMed  Google Scholar 

  225. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res. 2002;103:190–202.

    Article  PubMed  Google Scholar 

  226. Song Z, Peng Z, Liu Z, Yang J, Tang R, Gu Y. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Tissue Eng A. 2013;19:1543–53.

    Article  CAS  Google Scholar 

  227. Zhang J, Wang GY, Xiao YP, Fan LY, Wang Q. The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model. Biomaterials. 2011;32:7086–95.

    Article  CAS  PubMed  Google Scholar 

  228. He SK, Guo JH, Wang ZL, Zhang Y, Tu YH, Wu SZ, Huang FG, Xie HQ. Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model. Mater Sci Eng C. 2017;73:267–74.

    Article  CAS  Google Scholar 

  229. Chen MK, Badylak SF. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J Surg Res. 2001;99:352–8.

    Article  CAS  PubMed  Google Scholar 

  230. Wang M, Li YQ, Cao J, Gong M, Zhang Y, Chen X, Tian MX, Xie HQ. Accelerating effects of genipin-crosslinked small intestinal submucosa for defected gastric mucosa repair. J Mater Chem B. 2017;5:7059–71.

    Article  CAS  PubMed  Google Scholar 

  231. Gu Y, Dai K. Substitution of porcine small intestinal submucosa for rabbit Achilles tendon, an experimental study. Zhonghua Yi Xue Za Zhi. 2002;82:1279–82.

    PubMed  Google Scholar 

  232. Bertone AL, Goin S, Kamei SJ, Mattoon JS, Litsky AS, Weisbrode SE, Clarke RB, Plouhar PL, Kaeding CC. Metacarpophalangeal collateral ligament reconstruction using small intestinal submucosa in an equine model. J Biomed Mater Res A. 2008;84:219–29.

    Article  PubMed  Google Scholar 

  233. Corno AF, Smith P, Bezuska L, Mimic B, Decellularized Porcine I. Small intestine sub-mucosa patch suitable for aortic arch repair? Front Pediatr. 2018;6:149.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7:5038–55.

    Article  CAS  PubMed  Google Scholar 

  235. Padalino MA, Castellani C, Dedja A, Fedrigo M, Vida VL, Thiene G, Stellin G, Angelini A. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur J Cardiothorac Surg. 2012;42:e128–35.

    Article  PubMed  Google Scholar 

  236. Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016;11:022003.

    Article  PubMed  Google Scholar 

  237. Feng X, Shen R, Tan J, Chen X, Pan Y, Ruan S, Zhang F, Lin Z, Zeng Y, Wang X, Lin Y, Wu Q. The study of inhibiting systematic inflammatory response syndrome by applying xenogenic (porcine) acellular dermal matrix on second-degree burns. Burns. 2007;33:477–9.

    Article  PubMed  Google Scholar 

  238. Callcut RA, Schurr MJ, Sloan M, Faucher LD. Clinical experience with alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns. 2006;32:583–8.

    Article  CAS  PubMed  Google Scholar 

  239. Dieterich M, Faridi A. Biological matrices and synthetic meshes used in implant-based breast reconstruction - a review of products available in Germany. Geburtshilfe Frauenheilkd. 2013;73:1100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Valdatta L, Cattaneo AG, Pellegatta I, Scamoni S, Minuti A, Cherubino M. Acellular dermal matrices and radiotherapy in breast reconstruction: a systematic review and meta-analysis of the literature. Plast Surg Int. 2014;2014:472604.

    PubMed  PubMed Central  Google Scholar 

  241. Salzberg CA. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm). Ann Plast Surg. 2006;57:1–5.

    Article  CAS  PubMed  Google Scholar 

  242. Chun YS, Verma K, Rosen H, Lipsitz S, Morris D, Kenney P, Eriksson E. Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plast Reconstr Surg. 2010;125:429–36.

    Article  CAS  PubMed  Google Scholar 

  243. Vos JD, Latev MD, Labadie RF, Cohen SM, Werkhaven JA, Haynes DS. Use of AlloDerm in type I tympanoplasty: a comparison with native tissue grafts. Laryngoscope. 2005;115:1599–602.

    Article  PubMed  Google Scholar 

  244. Hernandez SC, Sibley H, Fink DS, Kunduk M, Schexnaildre M, Kakade A, McWhorter AJ. Injection laryngoplasty using micronized acellular dermis for vocal fold paralysis: long-term voice outcomes. Otolaryngol Head Neck Surg. 2016;154:892–7.

    Article  PubMed  Google Scholar 

  245. Taylor JB, Gerlach RC, Herold RW, Bisch FC, Dixon DR. A modified tensionless gingival grafting technique using acellular dermal matrix. Int J Periodont Restorat Dentist. 2010;30:513–21.

    Google Scholar 

  246. Agarwal C, Kumar BT, Mehta DS. An acellular dermal matrix allograft (Alloderm((R))) for increasing keratinized attached gingiva: a case series. J Indian Soc Periodontol. 2015;19:216–20.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Snyder SJ, Arnoczky SP, Bond JL, Dopirak R. Histologic evaluation of a biopsy specimen obtained 3 months after rotator cuff augmentation with GraftJacket Matrix. Arthroscopy. 2009;25:329–33.

    Article  PubMed  Google Scholar 

  248. Mohsina A, Kumar N, Sharma AK, Mishra B, Mathew DD, Remya V, Shrivastava S, Negi M, Kritaniya D, Tamil Mahan P, Maiti SK, Shrivastava S, Singh KP. Bioengineered acellular dermal matrices for the repair of abdominal wall defects in rats. Hernia. 2015;19:219–29.

    Article  CAS  PubMed  Google Scholar 

  249. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012;64:1063–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Luo X, Kulig KM, Finkelstein EB, Nicholson MF, Liu XH, Goldman SM, Vacanti JP, Grottkau BE, Pomerantseva I, Sundback CA, Neville CM. In vitro evaluation of decellularized ECM-derived surgical scaffold biomaterials. J Biomed Mater Res Pt B. 2017;105:585–93.

    Article  CAS  Google Scholar 

  251. Hoganson DM, O'Doherty EM, Owens GE, Harilal DO, Goldman SM, Bowley CM, Neville CM, Kronengold RT, Vacanti JP. The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials. 2010;31:6730–7.

    Article  CAS  PubMed  Google Scholar 

  252. Hoganson DM, Meppelink AM, Hinkel CJ, Goldman SM, Liu XH, Nunley RM, Gaut JP, Vacanti JP. Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials. J Biomed Mater Res A. 2014;102:2875–83.

    Article  CAS  PubMed  Google Scholar 

  253. Lai PH, Chang Y, Chen SC, Wang CC, Liang HC, Chang WC, Sung HW. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration. Tissue Eng. 2006;12:2499–508.

    Article  CAS  PubMed  Google Scholar 

  254. Cui H, Chai Y, Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A. 2019;107:1849–59.

    CAS  PubMed  Google Scholar 

  255. Datta P, Chatterjee J, Dhara S. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications. J Biomater Sci. 2013;24:696–713.

    Article  CAS  Google Scholar 

  256. Lee MS, Lee DH, Jeon J, Tae G, Shin YM, Yang HS. Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. J Ind Eng Chem. 2020;83:323–32.

    Article  Google Scholar 

  257. Ye Y, Pang Y, Zhang Z, Wu C, Jin J, Su M, Pan J, Liu Y, Chen L, Jin K. Decellularized periosteum-covered chitosan globule composite for bone regeneration in rabbit femur condyle bone defects. Macromol Biosci. 2018;18:e1700424.

    Article  PubMed  Google Scholar 

  258. Liu Q, Hatta T, Qi J, Liu H, Thoreson AR, Amadio PC, Moran SL, Steinmann SP, Gingery A, Zhao C. Novel engineered tendon-fibrocartilage-bone composite with cyclic tension for rotator cuff repair. J Tissue Eng Regen Med. 2018;12:1690–701.

    Article  CAS  PubMed  Google Scholar 

  259. Chen G, Lv Y. Decellularized bone matrix scaffold for bone regeneration. In: Turksen K, editor. Decellularized scaffolds and organogenesis: methods and protocols. New York: Springer; 2018. p. 239–54.

    Google Scholar 

  260. Heine J, Schmiedl A, Cebotari S, Karck M, Mertsching H, Haverich A, Kallenbach K. Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies. Artif Organs. 2011;35:930–40.

    Article  PubMed  Google Scholar 

  261. Lee JS, Lee K, Moon SH, Chung HM, Lee JH, Um SH, Kim DI, Cho SW. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromol Biosci. 2014;14:1181–9.

    Article  CAS  PubMed  Google Scholar 

  262. Ozeki M, Narita Y, Kagami H, Ohmiya N, Itoh A, Hirooka Y, Niwa Y, Ueda M, Goto H. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006;79:771–8.

    Article  PubMed  Google Scholar 

  263. Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater. 2020;110:68–81.

    Article  CAS  PubMed  Google Scholar 

  264. Oswal D, Korossis S, Mirsadraee S, Wilcox H, Watterson K, Fisher J, Ingham E. Biomechanical characterization of decellularized and cross-linked bovine pericardium. J Heart Valve Dis. 2007;16:165–74.

    PubMed  Google Scholar 

  265. Wu J, Brazile B, McMahan SR, Liao J, Hong Y. Heart valve tissue-derived hydrogels: preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. J Biomed Mater Res B Appl Biomater. 2019;107:1732–40.

    Article  CAS  PubMed  Google Scholar 

  266. Weber B, Dijkman PE, Scherman J, Sanders B, Emmert MY, Grunenfelder J, Verbeek R, Bracher M, Black M, Franz T, Kortsmit J, Modregger P, Peter S, Stampanoni M, Robert J, Kehl D, van Doeselaar M, Schweiger M, Brokopp CE, Walchli T, Falk V, Zilla P, Driessen-Mol A, Baaijens FP, Hoerstrup SP. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013;34:7269–80.

    Article  PubMed  Google Scholar 

  267. Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials. 2010;31:7257–65.

    Article  CAS  PubMed  Google Scholar 

  268. Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010;31:3941–8.

    Article  CAS  PubMed  Google Scholar 

  269. Proulx S, Audet C, Uwamaliya J, Deschambeault A, Carrier P, Giasson CJ, Brunette I, Germain L. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. Tissue Eng A. 2009;15:1709–18.

    Article  CAS  Google Scholar 

  270. Kim H, Park MN, Kim J, Jang J, Kim HK, Cho DW. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng. 2019;10:2041731418823382.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Rothrauff BB, Shimomura K, Gottardi R, Alexander PG, Tuan RS. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix. Acta Biomater. 2017;49:140–51.

    Article  CAS  PubMed  Google Scholar 

  272. Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105:151–63.

    Article  CAS  PubMed  Google Scholar 

  273. Tan QW, Zhang Y, Luo JC, Zhang D, Xiong BJ, Yang JQ, Xie HQ, Lv Q. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res A. 2017;105:1756–64.

    Article  CAS  PubMed  Google Scholar 

  274. Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M, Okazaki S, Yahagi N, Ohashi K, Tsukamoto K, Amemiya-Kudo M, Matsuzaka T, Shimano H, Yamada N, Aoki J, Morikawa R, Takanezawa Y, Arai H, Nagai R, Kadowaki T, Osuga J, Ishibashi S. Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol: a potential role in adipocyte lipolysis. Diabetes. 2006;55:2091–7.

    Article  CAS  PubMed  Google Scholar 

  275. Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33:3539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hong P, Bezuhly M, Graham ME, Gratzer PF. Efficient decellularization of rabbit trachea to generate a tissue engineering scaffold biomatrix. Int J Pediatr Otorhinolaryngol. 2018;112:67–74.

    Article  PubMed  Google Scholar 

  277. Giraldo-Gomez DM, Garcia-Lopez SJ, Tamay-de-Dios L, Sanchez-Sanchez R, Villalba-Caloca J, Sotres-Vega A, Del Prado-Audelo ML, Gomez-Lizarraga KK, Garciadiego-Cazares D, Pina-Barba MC. Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. Mater Sci Eng C. 2019;105:110142.

    Article  CAS  Google Scholar 

  278. Porzionato A, Sfriso MM, Pontini A, Macchi V, Petrelli L, Pavan PG, Natali AN, Bassetto F, Vindigni V, De Caro R. Decellularized human skeletal muscle as biologic scaffold for reconstructive surgery. Int J Mol Sci. 2015;16:14808–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B, Bianco A, Macchiarini P. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials. 2014;35:1205–14.

    Article  CAS  PubMed  Google Scholar 

  280. Mellott AJ, Shinogle HE, Nelson-Brantley JG, Detamore MS, Staecker H. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res Ther. 2017;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Mirzaeian L, Eivazkhani F, Hezavehei M, Moini A, Esfandiari F, Valojerdi MR, Fathi R. Optimizing the cell seeding protocol to human decellularized ovarian scaffold: application of dynamic system for bio-engineering. Cell J. 2020;22:227–35.

    PubMed  Google Scholar 

  282. Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Henning NF, LeDuc RD, Even KA, Laronda MM. Proteomic analyses of decellularized porcine ovaries identified new matrisome proteins and spatial differences across and within ovarian compartments. Sci Rep. 2019;9:20001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35:8791–800.

    Article  CAS  PubMed  Google Scholar 

  285. Hiraoka T, Hirota Y, Saito-Fujita T, Matsuo M, Egashira M, Matsumoto L, Haraguchi H, Dey SK, Furukawa KS, Fujii T, Osuga Y. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation. JCI Insight. 2016;1:e87591.

    Article  PubMed Central  Google Scholar 

  286. Shakouri-Motlagh A, O’Connor AJ, Kalionis B, Heath DE. Improved ex vivo expansion of mesenchymal stem cells on solubilized acellular fetal membranes. J Biomed Mater Res A. 2019;107:232–42.

    Article  CAS  PubMed  Google Scholar 

  287. Guruswamy Damodaran R, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018;12:1230–7.

    Article  CAS  PubMed  Google Scholar 

  288. Mestan K, Xin H, Su E. Vascular endothelial growth factor A administration rescues fetoplacental endothelial cell defects seen in severe fetal growth restriction. Placenta. 2016;45:67.

    Article  Google Scholar 

  289. Schneider KH, Aigner P, Holnthoner W, Monforte X, Nurnberger S, Runzler D, Redl H, Teuschl AH. Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomater. 2016;29:125–34.

    Article  CAS  PubMed  Google Scholar 

  290. Flynn L, Semple JL, Woodhouse KA. Decellularized placental matrices for adipose tissue engineering. J Biomed Mater Res A. 2006;79:359–69.

    Article  PubMed  Google Scholar 

  291. Mahmoudi-Rad M, Abolhasani E, Moravvej H, Mahmoudi-Rad N, Mirdamadi Y. Acellular amniotic membrane: an appropriate scaffold for fibroblast proliferation. Clin Exp Dermatol. 2013;38:646–51.

    Article  CAS  PubMed  Google Scholar 

  292. Balland O, Poinsard AS, Famose F, Goulle F, Isard PF, Mathieson I, Dulaurent T. Use of a porcine urinary bladder acellular matrix for corneal reconstruction in dogs and cats. Vet Ophthalmol. 2016;19:454–63.

    Article  CAS  PubMed  Google Scholar 

  293. Fu H, Teng L, Bai R, Deng C, Lv G, Chen J. Application of acellular intima from porcine thoracic aorta in full-thickness skin wound healing in a rat model. Mater Sci Eng C Mater Biol Appl. 2017;71:1135–44.

    Article  CAS  PubMed  Google Scholar 

  294. Sakakibara S, Ishida Y, Hashikawa K, Yamaoka T, Terashi H. Intima/medulla reconstruction and vascular contraction-relaxation recovery for acellular small diameter vessels prepared by hyperosmotic electrolyte solution treatment. J Artif Organs. 2014;17:169–77.

    Article  CAS  PubMed  Google Scholar 

  295. Syed O, Kim JH, Keskin-Erdogan Z, Day RM, El-Fiqi A, Kim HW, Knowles JC. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Acta Biomater. 2019;99:181–95.

    Article  CAS  PubMed  Google Scholar 

  296. Ghassemi T, Saghatolslami N, Matin MM, Gheshlaghi R, Moradi A. CNT-decellularized cartilage hybrids for tissue engineering applications. Biomed Mater. 2017;12:065008.

    Article  PubMed  Google Scholar 

  297. Gupta SK, Dinda AK, Potdar PD, Mishra NC. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. Biomed Res Int. 2013;2013:651945.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Iijima M, Aubin H, Steinbrink M, Schiffer F, Assmann A, Weisel RD, Matsui Y, Li RK, Lichtenberg A, Akhyari P. Bioactive coating of decellularized vascular grafts with a temperature-sensitive VEGF-conjugated hydrogel accelerates autologous endothelialization in vivo. J Tissue Eng Regen Med. 2018;12:e513–22.

    Article  CAS  PubMed  Google Scholar 

  299. Marinval N, Morenc M, Labour MN, Samotus A, Mzyk A, Ollivier V, Maire M, Jesse K, Bassand K, Niemiec-Cyganek A, Haddad O, Jacob MP, Chaubet F, Charnaux N, Wilczek P, Hlawaty H. Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and re-endothelialization potential of bioprostheses. Biomaterials. 2018;172:14–29.

    Article  CAS  PubMed  Google Scholar 

  300. Yang Y, Lei D, Zou H, Huang S, Yang Q, Li S, Qing FL, Ye X, You Z, Zhao Q. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater. 2019;97:321–32.

    Article  CAS  PubMed  Google Scholar 

  301. Khang G, Rhee JM, Shin P, Kim IY, Lee B, Lee SJ, Lee YM, Lee HB, Lee I. Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: The application for tissue engineered bone and cartilage. Macromol Res. 2002;10:158–67.

    Article  CAS  Google Scholar 

  302. Da L, Gong M, Chen A, Zhang Y, Huang Y, Guo Z, Li S, Li-Ling J, Zhang L, Xie H. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 2017;59:45–57.

    Article  CAS  PubMed  Google Scholar 

  303. Zhang Q, Qian C, Xiao W, Zhu H, Guo J, Ge Z, Cui W. Development of a visible light, cross-linked GelMA hydrogel containing decellularized human amniotic particles as a soft tissue replacement for oral mucosa repair. RSC Adv. 2019;9:18344–52.

    Article  CAS  Google Scholar 

  304. Choi JS, Yang HJ, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY, Cho YW. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release. 2009;139:2–7.

    Article  CAS  PubMed  Google Scholar 

  305. Choi JS, Kim BS, Kim JY, Kim JD, Choi YC, Yang HJ, Park K, Lee HY, Cho YW. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A. 2011;97:292–9.

    Article  PubMed  Google Scholar 

  306. Nakamura S, Ijima H. Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture. J Biosci Bioeng. 2013;116:746–53.

    Article  CAS  PubMed  Google Scholar 

  307. Tabuchi M, Negishi J, Yamashita A, Higami T, Kishida A, Funamoto S. Effect of decellularized tissue powders on a rat model of acute myocardial infarction. Mater Sci Eng C. 2015;56:494–500.

    Article  CAS  Google Scholar 

  308. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg. 2004;86:2243–50.

    Article  PubMed  Google Scholar 

  309. Sclafani AP, Romo T, Jacono AA, McCormick S, Cocker R, Parker A. Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch Facial Plast Surg. 2000;2:130–6.

    Article  CAS  PubMed  Google Scholar 

  310. Pearl AW, Woo P, Ostrowski R, Mojica J, Mandell DL, Costantino P. A preliminary report on micronized alloderm injection laryngoplasty. Laryngoscope. 2002;112:990–6.

    Article  PubMed  Google Scholar 

  311. Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14.

    Article  CAS  PubMed  Google Scholar 

  312. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.

    Article  CAS  PubMed  Google Scholar 

  313. Johnson TD, Dequach JA, Gaetani R, Ungerleider J, Elhag D, Nigam V, Behfar A, Christman KL. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci. 2014;2014:60283D.

    PubMed  PubMed Central  Google Scholar 

  314. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88.

    Article  CAS  PubMed  Google Scholar 

  315. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, Kinsey AM, Demaria AN, Dib N, Christman KL. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med. 2018;12:e1678–90.

    Article  CAS  PubMed  Google Scholar 

  317. Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11:e0148225.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Johnson TD, Lin SY, Christman KL. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology. 2011;22:494015.

    Article  PubMed  PubMed Central  Google Scholar 

  319. Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater. 2015;27:116–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. La W-G, Jang J, Kim BS, Lee MS, Cho D-W, Yang HS. Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Adv. 2016;6:11546–53.

    Article  CAS  Google Scholar 

  321. Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, Dearth CL, Badylak SF. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35:8585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Wolf MT, Carruthers CA, Dearth CL, Crapo PM, Huber A, Burnsed OA, Londono R, Johnson SA, Daly KA, Stahl EC, Freund JM, Medberry CJ, Carey LE, Nieponice A, Amoroso NJ, Badylak SF. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. J Biomed Mater Res A. 2014;102:234–46.

    Article  PubMed  Google Scholar 

  323. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials. 2009;30:4021–8.

    Article  CAS  PubMed  Google Scholar 

  324. Kim JY, Ahn G, Kim C, Lee JS, Lee IG, An SH, Yun WS, Kim SY, Shim JH. Synergistic effects of beta tri-calcium phosphate and porcine-derived decellularized bone extracellular matrix in 3D-printed polycaprolactone scaffold on bone regeneration. Macromol Biosci. 2018;18:e1800025.

    Article  PubMed  Google Scholar 

  325. Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC, Bruno RD. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188–200.

    Article  CAS  PubMed  Google Scholar 

  327. Xu L, Huang Y, Wang D, Zhu S, Wang Z, Yang Y, Guo Y. Reseeding endothelial cells with fibroblasts to improve the re-endothelialization of pancreatic acellular scaffolds. J Mater Sci Mater Med. 2019;30:85.

    Article  PubMed  Google Scholar 

  328. Xiao J, Duan H, Liu Z, Wu Z, Lan Y, Zhang W, Li C, Chen F, Zhou Q, Wang X, Huang J, Wang Z. Construction of the recellularized corneal stroma using porous acellular corneal scaffold. Biomaterials. 2011;32:6962–71.

    Article  CAS  PubMed  Google Scholar 

  329. Ingram JH, Korossis S, Howling G, Fisher J, Ingham E. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 2007;13:1561–72.

    Article  CAS  PubMed  Google Scholar 

  330. Crabbe A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ, Nickerson CA. Recellularization of decellularized lung scaffolds is enhanced by dynamic suspension culture. PLoS One. 2015;10:e0126846.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Cuzzone DA, Albano NJ, Aschen SZ, Ghanta S, Mehrara BJ. Decellularized lymph nodes as scaffolds for tissue engineered lymph nodes. Lymphat Res Biol. 2015;13:186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Welman T, Michel S, Segaren N, Shanmugarajah K. Bioengineering for organ transplantation: progress and challenges. Bioengineered. 2015;6:257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Barrère F, Mahmood TA, de Groot K, van Blitterswijk CA. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater Sci Eng. 2008;59:38–71.

    Article  Google Scholar 

  334. Kiani M, Abbasi M, Ahmadi M, Salehi B. Organ transplantation in Iran; current state and challenges with a view on ethical consideration. J Clin Med. 2018;7:45.

    Article  PubMed Central  Google Scholar 

  335. Schiele NR, Koppes RA, Chrisey DB, Corr DT. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng A. 2013;19:1223–32.

    Article  CAS  Google Scholar 

  336. Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers. 2012;97:83–93.

    Article  CAS  PubMed  Google Scholar 

  337. Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJW, de Jonge J. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C. 2020;108:110200.

    Article  CAS  Google Scholar 

  338. Hillebrandt KH, Everwien H, Haep N, Keshi E, Pratschke J, Sauer IM. Strategies based on organ decellularization and recellularization. Transpl Int. 2019;32:571–85.

    PubMed  Google Scholar 

  339. Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, Soker S. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther. 2015;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Alexanian RA, Mahapatra K, Lang D, Vaidyanathan R, Markandeya YS, Gill RK, Zhai AJ, Dhillon A, Lea MR, Abozeid S, Schmuck EG, Raval AN, Eckhardt LL, Glukhov AV, Lalit PA, Kamp TJ. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochim Biophys Acta, Mol Cell Res. 2020;1867:118559.

    Article  CAS  Google Scholar 

  341. Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LV, Navajas D, Farre R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A. 2014;102:413–9.

    Article  PubMed  Google Scholar 

  342. Godin LM, Sandri BJ, Wagner DE, Meyer CM, Price AP, Akinnola I, Weiss DJ, Panoskaltsis-Mortari A. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS One. 2016;11:e0150966.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Stahl EC, Bonvillain RW, Skillen CD, Burger BL, Hara H, Lee W, Trygg CB, Didier PJ, Grasperge BF, Pashos NC, Bunnell BA, Bianchi J, Ayares DL, Guthrie KI, Brown BN, Petersen TH. Evaluation of the host immune response to decellularized lung scaffolds derived from alpha-Gal knockout pigs in a non-human primate model. Biomaterials. 2018;187:93–104.

    Article  CAS  PubMed  Google Scholar 

  344. Nguyen DT, O'Hara M, Graneli C, Hicks R, Miliotis T, Nystrom AC, Hansson S, Davidsson P, Gan LM, Magnone MC, Althage M, Heydarkhan-Hagvall S. Humanizing miniature hearts through 4-flow cannulation perfusion decellularization and recellularization. Sci Rep. 2018;8:7458.

    Article  PubMed  PubMed Central  Google Scholar 

  345. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  346. Yang W, Xia R, Zhang Y, Zhang H, Bai L. Decellularized liver scaffold for liver regeneration. In: Turksen K, editor. Decellularized scaffolds and organogenesis: methods and protocols. New York: Springer; 2018. p. 11–23.

    Google Scholar 

  347. Hassanein W, Cimeno A, Werdesheim A, Buckingham B, Harrison J, Uluer MC, Khalifeh A, Rivera-Pratt C, Klepfer S, Woodall JD, Dhru U, Bromberg E, Parsell D, Drachenberg C, Barth RN, LaMattina JC. Liver scaffolds support survival and metabolic function of multilineage neonatal allogenic cells. Tissue Eng A. 2018;24:786–93.

    Article  CAS  Google Scholar 

  348. Xu T, Zhu M, Guo Y, Wu D, Huang Y, Fan X, Zhu S, Lin C, Li X, Lu J, Zhu H, Zhou P, Lu Y, Wang Z. Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application. J Biomater Appl. 2015;30:379–87.

    Article  PubMed  Google Scholar 

  349. Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials. 2012;33:3401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Guan Y, Liu S, Liu Y, Sun C, Cheng G, Luan Y, Li K, Wang J, Xie X, Zhao S. Porcine kidneys as a source of ECM scaffold for kidney regeneration. Mater Sci Eng C. 2015;56:451–6.

    Article  CAS  Google Scholar 

  351. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng A. 2010;16:2207–16.

    Article  CAS  Google Scholar 

  352. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, Farney AC, Stratta RJ, Atala A, Opara EC, Soker S. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  CAS  PubMed  Google Scholar 

  355. Debnath T, Mallarpu CS, Chelluri LK. Development of bioengineered organ using biological acellular rat liver scaffold and hepatocytes. Organogenesis. 2020;2020:1–12.

    Google Scholar 

  356. Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A. 2018;106:2448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Akbarzadeh A, Khorramirouz R, Ghorbani F, Beigi RSH, Hashemi J, Kajbafzadeh AM. Preparation and characterization of human size whole heart for organ engineering: scaffold microangiographic imaging. Regen Med. 2019;14:939–54.

    Article  CAS  PubMed  Google Scholar 

  358. Hussein KH, Park K-M, Kang K-S, Woo H-M. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 2016;38:82–93.

    Article  CAS  PubMed  Google Scholar 

  359. Hussein KH, Saleh T, Ahmed E, Kwak HH, Park KM, Yang SR, Kang BJ, Choi KY, Kang KS, Woo HM. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res A. 2018;106:2034–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, J., Guo, Q., Xu, B., Li, X. (2021). Overview of Decellularized Materials for Tissue Repair and Organ Replacement. In: Li, X., Xie, H. (eds) Decellularized Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6962-7_1

Download citation

Publish with us

Policies and ethics