Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 746))

  • 532 Accesses

Abstract

Waste heat recovery using thermoelectric generator (TEG) is believed to be promising solution to the needs of the community’s electrical energy sources. TEG can produce electrical energy when there is a temperature difference between two different semi-conductor materials hence creating a voltage difference and a current flow. There are several types of TEG commercially available at the market with different specification and capabilities. This research was conducted to compare the power generation capability (Watt/m2) and the power production cost (Rp/Watt) of three TEG module i.e. TEC1-12706, TEC1-12710 and TEC1-12715. The test was conducted with and without the cooling system for the TEG module. The results showed that TEC1-12706 provide the best performance with 3800 W/m2 and 12 $/Watt with heatsink and 475 W/m2 and 97 $/Watt without heatsink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu H, Zhong C, Lee SW Lin L (2018) A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications. Appl Phys Rev

    Google Scholar 

  2. Wei C, Jing X (2017) A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization. Renew Sustain Energy Rev 74:1–18

    Article  MathSciNet  Google Scholar 

  3. Aparicio MP, Bakkali A, Sebastian T, Sogorb V, Bou A (2016) Radio Frequency Energy Harvesting—Sources and Techniques, 155–169

    Google Scholar 

  4. Moreno RJ, Grbovic D, Pollman, A (2016) Harvesting Waste Thermal Energy From Military Systems. In: Proc of the ASME 2018 Power and Energy Conference, 1–6, June

    Google Scholar 

  5. Simone A, Garcia-Polanco Z, Capablo J, Doyle JP, Barbato MC (2014) Household Appliances Wasted Heat Storage by means of a Packed bed TES with Encapsulated PCM. In: 13th International Conference on Sustainable Energy technologies

    Google Scholar 

  6. Setiawan A, Ayub T (2012) Perancangan, Pembuatan dan Pengujian Prototipe Generator Termoelektrik Berbahan Bakar Gas. Universitas Kristen Satya Wacana Jalan Diponegoro 52–60, Salatiga. 2012

    Google Scholar 

  7. Firmanda R (2019) Penyimpanan Energi Listrik Dari Konversi Energi Panas Menjadi Energi Listrik Menggunakan Thermoelectric Generator. Skripsi. Teknik Elektro. FTE-Universitas Telkom, Bandung

    Google Scholar 

  8. Nandy PR, Adhitya M (2009) Potensi Pembangkit Daya Termoelektrik Untuk Kendaraan Hibrid. Universitas Indonesia, Depok

    Google Scholar 

  9. Shanti Candra Puspita (2017) Hasto Sunarno,: Generator Termoelektrik untuk Pengisisan Aki. Departmen FisikaFMIPA, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS, Sukolilo, Surabaya

    Google Scholar 

  10. Andreas S, Taryono, MR (2012) Perancangan, Pembuatan dan Pengujian Prototipe Generator Termolektrik Berbahan Bakar Gas, ISSN 1978–2365, Vol. 11 No 1 Juni 2012: 1–10, Universitas Kristen Satya Wacana, Salatiga

    Google Scholar 

  11. Eky I, Abrar TA (2017) Rancang Bangun dan Realisasi Alat Ukur Performasi Pendingin Termoelekrik. Universitas Telkom, Bandung

    Google Scholar 

  12. Working Principle of Thermocouples. https://assets.omega.com/resources/how-thermocouples-work-1.jpg. Last accessed 10 March 2020

  13. Alfiyyah K (2019) Konversi Energi Panas Menjadi Energi Listrik Menggunakan Termoelektrik Generator. Skripsi. Teknik Elektro. FTE-Universitas Telkom, Bandung

    Google Scholar 

  14. Faris A, Ramdlan M, Porman P (2018) Pemanfaatan Thermoelectric Cooler Pada Photovoltaic Sebagai Pembangkit. ISSN: 2355–9365, e-Proceeding of Engineering: Vol .5, No. 3 December 2018|Page 3965 Telkom University, Bandung

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhitia Rachman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rachman, A., Priharti, W., Ramdhani, M. (2021). Performance Comparison of Three Thermoelectric Generator Types for Waste Heat Recovery. In: Triwiyanto, Nugroho, H.A., Rizal, A., Caesarendra, W. (eds) Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics. Lecture Notes in Electrical Engineering, vol 746. Springer, Singapore. https://doi.org/10.1007/978-981-33-6926-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6926-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6925-2

  • Online ISBN: 978-981-33-6926-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics