Skip to main content

Biomarkers and Heart Rate Variability in the Prognosis of Cardiovascular Disease: A Perspective

  • Conference paper
  • First Online:
Advances in Medical Physics and Healthcare Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 511 Accesses

Abstract

The cholesterol level, risk factors, cellular events including calcification and inflammation lead to the formation of atherosclerosis plaque. The deposited plaque leads to baroreflex impairment that narrows the blood vessels resulted in catastrophic clinical manifestation of cardiovascular diseases (CVDs). The severity of plaque is influenced by the risk factors. In the prognosis of atherosclerosis events, various biomarkers play an important role such as interleukin-6 (IL-6), C-reactive protein (CRP), low-density lipoprotein (LDL) levels and tumor necrosis factor-α (TNF-α), and many more. C-reactive protein (CRP) has suggested predicting cardiovascular events. The atherosclerosis progression has also been associated with an elevated heart rate (HR) with the relationship between heart rate and arterial stiffness. However, the exact role of the CRP assay for treatment decisions has not been fully established and the identification of such biomarkers is the ongoing quest that can predict the cardiovascular risk. Further, there has been little evidence of an association between HR and its variability with coronary atherosclerosis. Thus, measurement of heart rate variability (HRV) indexed to biomarker as an established measure of autonomic function, may offer additive predictive information and identify the risk factors of CVDs progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Hammond DJ Jr, Singh SK (2010) Atherosclerosis-related functions of C-reactive protein. Cardiovasc Haematol Disord Drug Targets 10:235–240

    Google Scholar 

  • Aggarwal Y, Das J, Mazumder PM, Kumar R, Sinha RK (2020) Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine. Biocybern Biomed Eng

    Google Scholar 

  • Andrews TC, Fenton T, Toyosaki N, Glasser SP, Young PM, MacCallum G, Gibson RS, Shook TL, Stone PH (1993) Subsets of ambulatory myocardial ischemia based on heart rate activity. Circadian distribution and response to anti-ischemic medication. The Angina and Silent Ischemia Study Group (ASIS). Circulation 88:92–100

    Google Scholar 

  • Angell-James JE (1974) Arterial baroreceptor activity in rabbits with experimental atherosclerosis. Circ Res 34:27–39

    Google Scholar 

  • Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED (2019) ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol 74(10):1043–1044

    Google Scholar 

  • Aronson D, Mittleman MA, Burger AJ (2001) Interleukin-6 levels are inversely correlated with heart rate variability in patients with decompensated heart failure. J Cardiovasc Electrophysiol 12:294–300

    Google Scholar 

  • Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G, Söderberg-Nauclér C, Assinger A (2014) Platelets mediate oxidized low-density lipoprotein–induced monocyte extravasation and foam cell formation. Arter Thromb Vasc Bio 34:571–580

    Google Scholar 

  • Beere PA, Glagov S, Zarins CK (1984) Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226:180–182

    Google Scholar 

  • Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low-density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279:48865–48875

    Google Scholar 

  • Berntson GG, Thomas Bigger J, Eckberg DL et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648

    Google Scholar 

  • Bilchick KC, Fetics B, Djoukeng R, Fisher SG, Fletcher RD, Singh SN, Nevo E, Berger RD (2002) Prognostic value of heart rate variability in chronic congestive heart failure (Veterans affairs’ survival trial of antiarrhythmic therapy in congestive heart failure). Am J Cardiol 90:24–28

    Google Scholar 

  • Bonacina F, Baragetti A, Catapano AL, Norata GD (2013) Long pentraxin 3: experimental and clinical relevance in cardiovascular diseases. Mediators Inflamm 2013:725102

    Google Scholar 

  • Chen W, Li S, Srinivasan SR, Boerwinkle E, Berenson GS (2007) A genome scan for loci influencing levels and trends of lipoprotein lipid-related traits since childhood: the Bogalusa heart study. Atherosclerosis 190:248–255

    Google Scholar 

  • Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujjar S, Cilfone NA, Kauffman KJ, Sun L, Sun H (2019) Endothelial TGF-β signaling drives vascular inflammation and atherosclerosis. Nat Met 1(9):912–926

    Google Scholar 

  • Custodis F, Schirmer SH, Baumhakel M, Heusch G, Bohm M, Laufs U (2010) Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol 56:1973–1983

    Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechano transduction. Physiol Rev 75:519–560

    Google Scholar 

  • De Ferrari GM, Sanzo A, Bertoletti A, SpecchiaG, Vanoli E, Schwarz PJ (2007) Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J Am Coll Cardiol 50:2285–2290

    Google Scholar 

  • Ferrari R (1999) The role of TNF in cardiovascular disease. Pharmacol Res 40:97–105

    Google Scholar 

  • Filipovsky J, Ducimetiere P, Safar ME (1992) Prognostic significance of exercise blood pressure and heart rate in middle-aged men. Hypertension 20:333–339

    Google Scholar 

  • Fujioka Y, Cooper A, Fong L (1998) Multiple processes are involved in the uptake of chylomicron remnants by mouse peritoneal macrophages. J Lipid Res 39:2339–2349

    Google Scholar 

  • Galinier M, Pathak A, Fourcade J, Androdias C, Curnier D, Varnous S, Boveda S, Massabuau P, Fauvel M, Senard JM, Bounhoure JP (2000) Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur Heart J 21:475–448

    Google Scholar 

  • Galinier M, Pathak A, Fourcade J, Androdias C, Curnier D, Varnous S, Boveda S, Massabuau P, Fauvel M, Senard JM, Bounhoure JP (2000) Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur Heart J 21:475–482

    Google Scholar 

  • Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27, 2292–2301

    Google Scholar 

  • Garlanda C, Bottazzi B, Bastone A, Mantovani A (2005) Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 23:337–366

    Google Scholar 

  • Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195:245–257

    Google Scholar 

  • Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schönbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195(2):245–257

    Google Scholar 

  • Gerl VB, Bhakdi S, Lackner KJ (2006) Enzymatic modification of low-density lipoprotein. In: Torzewski M, Lackner KJ (eds) Initiation and progression of atherosclerosis—enzymatic or oxidative modification of low-density lipoprotein? Clin Chem Lab Med 44:1389–1394

    Google Scholar 

  • Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Stehouwer CD (2001) Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diab Care 24(10):1793–1798

    Google Scholar 

  • Gerrity RG, Naito HK, Richardson M, Schwartz CJ (1979) Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Clin Pathol 95:775–792

    Google Scholar 

  • Gimbrone MA Jr, Garcia-Cardena G (2013) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardio Pathol 22:9–15

    Google Scholar 

  • Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239

    Google Scholar 

  • Hackam DG, Anand SS (2003) Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 290(7):932–940

    Google Scholar 

  • Haddy N, Sass C, Droesch S, Zaiou M, Siest G, Ponthieux A, Lambert D, Visvikis S (2003) IL-6, TNF-α and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 170(2):277–283

    Google Scholar 

  • Haim M, Tanne D, Boyko V, Reshef T, Goldbourt U, Leor J, Mekori YA, Behar S (2002) Soluble intercellular adhesion molecule-1 and long-term risk of acute coronary events in patients with chronic coronary heart disease: data from the Bezafibrate Infarction Prevention (BIP) Study. J Am Coll Cardiol 39(7):1133–1138

    Google Scholar 

  • Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, Peters T, Sweep FC, Haller H, Pichmlmaier AM, Luft FC, Jordan J (2010) Carotid baroreceptor stimulation, sympathetic activity, baroreflex function and blood pressure in hypertensive patients. Hypertension 55319–55626

    Google Scholar 

  • Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R (1999) Interleukin-6 exacerbates early atherosclerosis in mice. Arter Thromb Vasc Biol 19:2364–2367

    Google Scholar 

  • Ishida Y, Migita K, Izumi Y, Nakao K, Ida H, Kawakami A, Abiru S, Ishibashi H, Eguchi K, Ishii N (2004) The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett 569:156–160

    Google Scholar 

  • Johnson BD, Kip KE, Marroquin OC, Ridker PM, Kelsey SF, Shaw LJ, Pepine CJ, Sharaf B, Bairey Merz CN, Sopko G, Olson MB (2004) Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute–Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109(6):726–732

    Google Scholar 

  • Jovinge S, Hamsten A, Tornvall P et al (1998) Evidence for a role of tumor necrosis factor alpha in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease. Metabolism 47:113–118

    Google Scholar 

  • Kanne WB, Kannel C, Paffenbarger Jr RS, Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J 113:1489–1494

    Google Scholar 

  • Kaplan JR, Manuck SB, Adams MR, Weingand KW, Clarkson TB (1987) Inhibition of coronary atherosclerosis by propranolol in behaviorally predisposed monkeys fed an atherogenic diet. Circulation 76:1364–1372

    Google Scholar 

  • Kaptoge S, Di Angelantonio E, Pennells L (2012) Emerging risk factors collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367:1310–1320

    Google Scholar 

  • Kasapis C, Thompson PD (2005) The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol 45:1563–1569

    Google Scholar 

  • La Rovere MT, Specchia G, Mortara A, Schwartz PJ (1988) Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 78:816–824

    Google Scholar 

  • Lang CC, Gupta S, Kalra P, Keavney B, Menown I, Morley C, Padmanabhan S (2010) Elevated heart rate and cardiovascular outcomes in patients with coronary artery disease: clinical evidence and pathophysiological mechanisms. Atherosclerosis 212:1–8

    Google Scholar 

  • Lanza GA, Sgueglia GA, Cianflone D, Rebuzzi AG, Angeloni G, Sestito A, Infusino F, Crea F, Maseri A (2006) Relation of heart rate variability to serum levels of C-reactive protein in patients with unstable angina pectoris. Am J Cardiol 97:1702–1706

    Google Scholar 

  • Lei J, Vodovotz Y, Tzeng E, Billiar TR (2013) Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide-Biol Ch 35:175–185

    Google Scholar 

  • Libby P (2001) Inflammation in atherosclerosis. Arter Thromb Vasc Biol 3:2045–2051

    Google Scholar 

  • Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl 368:2004–2013

    Google Scholar 

  • Libby P, King K (2015) Biomarkers: a challenging conundrum in cardiovascular disease. Arter Thromb Vasc Biol 35:2491–2495

    Google Scholar 

  • Libby P, Mach F, Selwyn AP, Ganz P (1988) Current concepts in cardiovascular pathology: the role of LDL cholesterol in plaque rupture and stabilization. Am J Med 104:14S–18S

    Google Scholar 

  • Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, Doran AC, Vickers KC (2019) The role of lipids and lipoproteins in atherosclerosis. InEndotext [Internet]

    Google Scholar 

  • Lundberg AM, Hansson GK (2010) Innate immune signals in atherosclerosis. Clin Immunol 134(1):5–24

    Google Scholar 

  • Malik M, Camm AJ, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger RE, Lombardi F, Malliani A, Moss AJ, Rottman JN, Schmidt G, Schwartz PJ, Singer DH (1996) Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Google Scholar 

  • Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Raicu M, Muresian H, Simionescu M (2015) Human monocytes, and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461:172–179

    Google Scholar 

  • Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896

    Google Scholar 

  • Minami J, Ishimitsu T, Matsuoka H (1999) Effects of smoking cessation on blood pressure and heart rate variability in habitual smokers. Hypertension 33:586–590

    Google Scholar 

  • Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H, Morganelli PM, Chang CC, Chang TY (1998) Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arter Thromb Vasc Biol 18:1568–1574

    Google Scholar 

  • Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, Pozzoli M, Opasich C, Tavazzi L (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96:3450–3458

    Google Scholar 

  • Newby AC (2007) Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 17:253–258

    Google Scholar 

  • Ng SB, Tan YH, Guy GR (1994) Differential induction of the interleukin-6 gene by tumor necrosis factor and interleukin-1. J Biol Chem 269:19021–19027

    Google Scholar 

  • Nold M, Goede A, Eberhardt W, Pfeilschifter J, Mühl H (2003) IL-18 initiates release of matrix metalloproteinase-9 from peripheral blood mononuclear cells without affecting tissue inhibitor of matrix metalloproteinases-1: suppression by TNFα blockage and modulation by IL-10. Naunyn-Schmiedeberg's Arch Pharmacol 367:68–75

    Google Scholar 

  • Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013

    Google Scholar 

  • Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772

    Google Scholar 

  • Roach D, Wilson W, Ritchie D, Sheldon R (2004) Dissection of long-range heart rate variability: controlled induction of prognostic measures by activity in the laboratory. J Am Coll Cardiol 43:2271–2277

    Google Scholar 

  • Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Große-Dunker G, Heisel I, Hornof F, Jeken J, Rebling NM (2012) CD14++ CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520

    Google Scholar 

  • Santos LP, Umpierre D (2020) Exercise, cardiovascular health, and risk factors for atherosclerosis: a narrative review on these complex relationships and caveats of literature. Front Physio 11

    Google Scholar 

  • Satoh K, Fukumoto Y, Sugimura K, Miura Y, Aoki T, Nochioka K, Tatebe S, Miyamichi-Yamamoto S, Shimizu T, Osaki S, Takagi Y (2012) Plasma cyclophilin A is a novel biomarker for coronary artery disease. Circulation 77:447–455

    Google Scholar 

  • Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T, de Leeuw PW (2010) Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 56:1254–1258

    Google Scholar 

  • Schwartz EA, Reaven PD (2012) Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochimica et Biophys Acta 1821:858–866

    Google Scholar 

  • Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL versus selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–918

    Google Scholar 

  • Soeki T, Sata M (2016) Inflammatory biomarkers and atherosclerosis. Inte Heart J 15:346

    Google Scholar 

  • Stamellos KD, Shackelford JE, Shechter, I, Jiang, G, Conrad, D, Keller GA, Krisans SK (1993) Subcellular localization of squalene synthase in rat hepatic cells. Biochemical and immunochemical evidence. J Biol Chem 268:12825–12836

    Google Scholar 

  • Stary HC, Chandler AB, Glagov S, Guyton J, Insull W, Jr Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner, WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    Google Scholar 

  • Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE (2005) Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infraction. J cardiovasc Electrophysio 26:13–20

    Google Scholar 

  • Sun H, Koike T, Ichikawa T, Hatakeyama K, Shiomi M, Zhang B, Kitajima S, Morimoto M, Watanabe T, Asada Y, Chen YE (2005) C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. Am J Pathol 167:1139–1148

    Google Scholar 

  • Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131

    Google Scholar 

  • Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 93:10417–10422

    Google Scholar 

  • Torzewski M, Suriyaphol P, Paprotka K, Spath L, Ochsenhirt V, Schmitt A, Han SR, Husmann M (2004) In the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arteriscl Throm Vas 24:2130–2136

    Google Scholar 

  • Turunen MP, Hiltunen MO, Yla-Herttuala S (1999) Gene therapy for angiography, restenosis and related diseases. Exp Gerontol 34:564–574

    Google Scholar 

  • Vinik AI, Erbas T, Casellini CM (2013) Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabet Investigat 4:4–18

    Google Scholar 

  • Virmani R, Burke AP, Kolodgie FD, Farb A (2002) Vulnerable plaque: the pathology of unstable coronary lesions. J Inter cardio 15:439–446

    Google Scholar 

  • Vlachakis ND, Mendlowitz M, DeGusman DD (1976) Diminished baroreceptor sensitivity in elderly hypertensives: possible role of atherosclerosis. Atherosclerosis 24:243–249

    Google Scholar 

  • Vroman A, Ruvkun V, Shvartz E, Wojtkiewicz G, Santos Masson G, Tesmenitsky Y, Folco E, Gram H, Nahrendorf M, Swirski FK, Sukhova GK (2019) Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur Heart J 40(30):2482–2491

    Google Scholar 

  • Wang TJ (2011) Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 123(5):551–565

    Google Scholar 

  • Wang HH, Hung TM, Wei J, Chiang AN (2004) Fish oil increases antioxidant enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout mice. Cardiovasc Res 61:169–176

    Google Scholar 

  • Williams KJ, Tabas I (1998) The response- to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9:471–474

    Google Scholar 

  • Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847

    Google Scholar 

  • Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB (1991) Probability of stroke: a risk profile from the Framingham Study. Stroke 22:312–318

    Google Scholar 

  • Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, Blumenthal RS, Budoff MJ (2013) High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? Am Coll Cardiol 62:397–408

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Prabin Kumar Shrivastava of Rajendra Institute of Medical Sciences, Ranchi for his valuable suggestion for the proposed signaling pathway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogender Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Aggarwal, Y., Nigam, V.K. (2021). Biomarkers and Heart Rate Variability in the Prognosis of Cardiovascular Disease: A Perspective. In: Mukherjee, M., Mandal, J., Bhattacharyya, S., Huck, C., Biswas, S. (eds) Advances in Medical Physics and Healthcare Engineering. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6915-3_7

Download citation

Publish with us

Policies and ethics