Skip to main content

Supercritical Fluids as Green Solvents

  • Chapter
  • First Online:
Green Organic Reactions

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Supercritical fluids have gained attention from the research community from the 1980s and interest in developing green chemical reactions and sustainable chemical engineering processes using them have grown exponentially over the years. The current chapter describes the latest developments in the use of supercritical fluids as green solvents in extraction, chromatography, as reaction medium and in fluid deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1988) Green chemistry—theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Ahluwalia VK (2013) Green chemistry. Narosa Publishing House, New Delhi

    Google Scholar 

  3. Macfarlane DR, Kar M, Pringle JM (2017) Fundamentals of ionic liquids: from chemistry to applications. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  4. Klass DL (1988) Biomass for renewable energy, fuels and chemicals. Elsevier Inc, USA

    Google Scholar 

  5. Gladysz JA, Curran DP, Horvath IT (eds) (2004) Handbook of fluorous chemistry. Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim

    Google Scholar 

  6. Hunt AJ, Attard AM (eds) (2018) Supercritical and other high pressure solvent systems for extraction, reaction and material processing. Royal Society of Chemistry, UK

    Google Scholar 

  7. Edward R, Qiubai S, Zhiqiang Z et al (2009) Mini review: green sustainable processes using supercritical fluid carbon dioxide. J Envir Sci 21:720–726

    Article  CAS  Google Scholar 

  8. Zoccali M, Donati P, Mondello L (2019) Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. Tr Analy Chem 116:158–165

    Article  CAS  Google Scholar 

  9. Catchpole O, Moreno T, Montanes F et al (2018) Perspectives on processing of high value lipids using supercritical fluids. J Supercrit Fluids 134:260–268

    Article  CAS  Google Scholar 

  10. Bittencourt GM, Firmiano DM, Fachini RP et al (2019) Application of green technology for the acquisition of extracts of araçá (Psidiumgrandifolium Mart. ex DC.) using supercritical CO2 and pressurized ethanol: characterization and analysis of activity. J Food Sci 84:1297–1307

    Article  CAS  Google Scholar 

  11. Castro-Vargas HI, Baumann W, Ferreiro SRS et al (2019) Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J Food Sci Technol 56:3055–3066

    Article  CAS  Google Scholar 

  12. Li K, Xu Z (2019) A review of current progress of supercritical fluid technologies for e-waste treatment. J Cleaner Prod 227:794–809

    Article  CAS  Google Scholar 

  13. King JW, List GR (eds) (1997) Supercritical fluid technology in oil and lipid chemistry. AOCS Press, Illinois

    Google Scholar 

  14. Valli JMD, Fuente JCD, Uquiche E (2012) A refined equation for predicting the solubility of vegetable oils in high-pressure CO2. J Supercrit Fluids 67:60–70

    Article  CAS  Google Scholar 

  15. Bourgou S, Rebsy IB, Dakhlaoui S et al (2019) Green extraction of oil from Carum carvi seeds using bio-based solvent and supercritical fluid: Evaluation of its antioxidant and anti-inflammatory activities. Phytochem Anal. https://doi.org/10.1002/pca.2864

    Article  Google Scholar 

  16. Santes LC, Bitencourt RG, Santos P et al (2019) Solubility of passion fruit (passiflora edulis sims) seed oil in supercritical CO2. Fluid Phase Equilib 493:174–180

    Article  CAS  Google Scholar 

  17. Garcia-Perez JS, Cuellar-Bermidez SP, Cruz-Quiroz R et al (2019) Supercritical CO2-based tailor made valorization of origanum vulgare L extracts: a green approach to extract high-value compounds with applied perspectives. J Environ management 232:796–902

    Article  CAS  Google Scholar 

  18. Alvarez MV, Cabred S, Ramirez CL et al (2019) Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. J Supercrit Fluids 143:90–96

    Article  CAS  Google Scholar 

  19. Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J et al (2019) Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J Supercrit Fluids 147:213–221

    Google Scholar 

  20. Gallo-Molina AC, Castro-Vargas HI, Garzon-Mendez WF et al (2019) Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J Supercrit Fluids 146:208–216

    Article  CAS  Google Scholar 

  21. Sánchez-Camargo AP, Parada-Alfonso F, Ibáñez E et al (2019) Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J Sep Sci 42:243–257

    Article  CAS  Google Scholar 

  22. Sánchez-Camargo AP, Parada-Alfonso F, Ibáñez E et al (2017) On-line coupling of supercritical fluid extraction and chromatographic techniques. J Sep Sci 40:213–227

    Article  CAS  Google Scholar 

  23. Brondz I, Sedunov B, Sivaraman N (2017) Influence of modifiers on supercritical fluid chromatography (SFC) and supercritical fluid extraction (SFE) part I. Int J Anal Mass Sp Chr 5:17–39

    CAS  Google Scholar 

  24. Pilařová V, Plachká K, Khalikova MA et al (2019) Recent developments in supercritical fluid chromatography—mass spectrometry: is it a viable option for analysis of complex samples? Tr Anal Chem 112:212–225

    Article  CAS  Google Scholar 

  25. Pirok BWJ, Gargano AFG, Schoenmakers PJ (2018) Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 41:68–98

    Article  CAS  Google Scholar 

  26. Hirata Y, Sogabe I (2004) Separation of fatty acid methyl esters by comprehensive two dimensional supercritical fluid chromatography with packed columns and programming of sampling duration. Anal Bioanal Chem 378:1999–2003

    Article  CAS  Google Scholar 

  27. Hirata Y, Hashiguchi T, Kawata E (2003) Development of comprehensive two-dimensional packed column supercritical fluid chromatography. J Sep Sci 26:531–535

    Article  CAS  Google Scholar 

  28. Yu RK, Tsai YT, Ariga T et al (2011) Structures, biosynthesis, and functions of gangliosides–an overview. J Oleo Sci 60:537–544

    Article  CAS  Google Scholar 

  29. Si W, Liu Y, Xiao Y et al (2020) An offline two-dimensional supercritical fluid chromatography × reversed phase liquid chromatography tandem quadrupole time-of-flight mass spectrometry system for comprehensive gangliosides profiling in swine brain extract. Talanta 208:120366

    Article  CAS  Google Scholar 

  30. Gibitzeisath N, Sturn S, Stuppner H (2018) Supercritical fluid chromatography in natural product analysis—an update. Planta Med 84:361–371

    Article  CAS  Google Scholar 

  31. He P, Zhang Y, Zhou Y et al (2019) Supercritical fluid chromatography-a technical overview and its applications in medicinal plant analysis: an update covering 2012–2018. The Analyst 144:5324–5352

    Article  CAS  Google Scholar 

  32. Mentañés F, Tallon S (2018) Supercritical fluid chromatography as a technique to fractionate high-valued compounds from lipids. Separations. Separations 5(3):38–50

    Article  CAS  Google Scholar 

  33. Wei W, Hou J, Yao C et al (2019) A high-efficiency strategy integrating offline two dimensional separation and data post-processing with dereplication: characterization of bufadienolides in Venenum Bufonis as a case study. J Chr A 1603:179–189

    Article  CAS  Google Scholar 

  34. Xinzhong Z, Yuechen Z, Xinyi C et al (2018) Application and enantiomeric residue determination of diniconazole in tea and grape and apple by supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Chr A 1581–1582:144–155

    Google Scholar 

  35. Speybrouck D, Emmanuelle L (2016) Preparative supercritical fluid chromatography: a powerful tool for chiral separations. J Chr A 1467:33–55

    Article  CAS  Google Scholar 

  36. Harps LC, Joseph JF, Parr MK (2019) SFC for chiral separations in bioanalysis. J Pharm Biomed Anal 162:47–59

    Article  CAS  Google Scholar 

  37. Nie L, Dai Z, Shuangcheng M (2016) Improved chiral separation of (R,S)-goitrin by SFC: an application in traditional chinese medicine. J Anal Meth Chem, S)-Goitrin by SFC. https://doi.org/10.1155/2016/5782942

    Book  Google Scholar 

  38. Berger TA (1995) Packed column supercritical fluid chromatography. Royal Society of Chemistry, UK

    Google Scholar 

  39. Ansell RJ, Kuah JKL, Wang D et al (2012) Imprinted polymers for chiral resolution of (±)-ephedrine, 4: packed column supercritical fluid chromatography using molecularly imprinted chiral stationary phases. J Chr A 1264:117–123

    Article  CAS  Google Scholar 

  40. Knez Ž, Markočič E, Leitgeb M et al (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  CAS  Google Scholar 

  41. Olmos A, Asensio G, Pérez PJ (2016) Homogeneous metal-based catalysis in supercritical carbon dioxide as reaction medium. ACS Catal 6:4265–4280

    Article  CAS  Google Scholar 

  42. Mayadevi S (2012) Reactions in supercritical carbon dioxide. Ind J Chem 51A:1298–1305

    CAS  Google Scholar 

  43. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494

    Article  CAS  Google Scholar 

  44. Baiker A (1999) Supercritical fluids in heterogeneous catalysis. Chem Rev 99:453–474

    Article  CAS  Google Scholar 

  45. Burk MJ, Feng S, Gross MF et al (1995) Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc 117:8277–8278

    Article  CAS  Google Scholar 

  46. Xiao J, Nefkens SCA, Jessop PG et al (1996) Asymmetric hydrogenation of α, β-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett 37:2813–2816

    Article  CAS  Google Scholar 

  47. Kainz S, Brinkmann A, Leitner W, Pfaltz A (1999) Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc 121:6421–6429

    Article  CAS  Google Scholar 

  48. Jerner G, Sueur D, Mallat T et al (2000) Partial oxidation of alcohols in supercritical carbon dioxide. Chem Commun 2247–2248

    Google Scholar 

  49. Clifford AA, Pople K, Gaskill WJ et al (1998) Potential tuning and reaction control in the Diels-Alder reaction between cyclopentadiene and methyl acrylate in supercritical carbon dioxide. J Chem Soc, Faraday Trans 94:1451–1456

    Article  CAS  Google Scholar 

  50. Renslo AR, Weinstein RD, Tester JW et al (1997) Concerning the regiochemical course of the Diels–Alder reaction in supercritical carbon dioxide. J Org Chem 62:4530–4533

    Article  CAS  Google Scholar 

  51. Jeong N, Hwang SH, Lee YW et al (1997) Catalytic Pauson–Khand reaction in super critical fluids. J Am Chem Soc 119:10549–10550

    Article  CAS  Google Scholar 

  52. Rose PM, Clifford AA, Rayner CM (2002) The Baylis–Hillman reaction in supercritical carbon dioxide: enhanced reaction rates, unprecedented ether formation, and a novel phase-dependent 3-component coupling. Chem Comm 968–969

    Google Scholar 

  53. Knez Ž, Pantić M, Cör D et al (2019) Are supercritical fluids solvents for the future? Chem Engg Proc 141:107532

    Article  CAS  Google Scholar 

  54. Xiang C, Liu SY, Fu Y et al (2019) A quick method for producing biodiesel from soy sauce residue under supercritical carbon dioxide. Renew Energy 134:739–744

    Article  CAS  Google Scholar 

  55. DeSimone M, Guan Z, Elsbernd CS (1992) Synthesis of fluoropolymers in supercritical carbon dioxide 257:945–947

    CAS  Google Scholar 

  56. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. 28:121–191

    Google Scholar 

  57. Kiran E (2016) Supercritical fluids and polymers—the year in review—2014. J Supercrit Fluids 110:126–153

    Article  CAS  Google Scholar 

  58. Belomoina NM, Bulycheva EG, Nikitin LN et al (2016) Study of the process of poly(phenylquinoxaline)s formation in supercritical carbon dioxide. J Supercrit Fluids 113:66–71

    Article  CAS  Google Scholar 

  59. Ngo MT, Dickmann JS, Hassler JC et al (2016) A new experimental system for combinatorial exploration of foaming of polymers in carbon dioxide: the gradient foaming of PMMA. J Supercrit Fluids 109:1–19

    Article  CAS  Google Scholar 

  60. Cooper AI, Hems WP, Holmes A (1999) Synthesis of highly cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization. Macromolecules 32:2156–2166

    Article  CAS  Google Scholar 

  61. Belomoina NM, Bulycheva EG, Elmanovich IV et al (2019) Supercritical carbon dioxide as an effective medium for poly(naphthoylenebenzimidazole)’s synthesis. J Supercrit Fluids 148:148–154

    Article  CAS  Google Scholar 

  62. Han X, Poliakoff M (2012) Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chem Soc Rev 41:1428–1436

    Article  CAS  Google Scholar 

  63. Amandi R, Hyde JR, Ross SK et al (2005) Continuous reactions in supercritical fluids; a cleaner, more selective synthesis of thymol in supercritical CO2. Green Chem 7:288–293

    Article  CAS  Google Scholar 

  64. Wang S, Tang S (2019) Rapid and facile synthesis of metal organic framework materials by reaction crystallization in supercritical CO2. Mat Lett 251:65–68

    Article  CAS  Google Scholar 

  65. Hirase R, Honda K, Ishihara M et al (2018) A new method of using supercritical carbon dioxide as a green solvent for synthesis and purification of 5,5‴-bis(tridecafluorohexyl)-2,2′:5′,2″:5″,2‴-quaterthiophene, which is one of n-type organic semiconducting materials. Tetrahedron Lett 59:469–472

    Article  CAS  Google Scholar 

  66. Ganapathy HS, Yuvaraj H, Hwang HS (2006) CO2-soluble semiconducting polymers synthesized in supercritical carbon dioxide. Synth Met 156:576–581

    Article  CAS  Google Scholar 

  67. Habulin M, Primozic M, Knez Z (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54:667–677

    CAS  Google Scholar 

  68. Lozano P, de Diego T, Iborra JL (2010) Supercritical solvents. In: Anastas PT (ed) Handbook of green chem. Wiley‐VCH Verlag GmbH & Co. KGaA, New York, Part 4

    Google Scholar 

  69. Kamat SV, Beckman EJ, Russell AJ (2008) Enzyme activity in supercritical fluids. Cr Rev Biotech 15:41–71

    Article  Google Scholar 

  70. Hyde J, Leitner W, Poliakoff M (2002) Catalytic reactions in supercritical fluids. In: van Eldik R, Klärner F-G (eds) High pressure chemistry: synthetic, mechanistic, and supercritical applications. Wiley-VCH Verlag GmbH, New York, pp 371–397

    Chapter  Google Scholar 

  71. Hybertson BM, Hansen BN, Barkley RM et al (1991) Deposition of palladium films by a novel supercritical fluid transport-chemical deposition process. Mater Res Bull 26:1127–1133

    Google Scholar 

  72. Watkins JJ, McCarthy TJ (1995) Polymer/metal nanocomposite synthesis in supercritical carbon dioxide. Chem Mater 7:1991–1994

    Article  CAS  Google Scholar 

  73. Xu Q, Zhao X, Yin et al (2016) Direct growth of highly-dispersed MnCl2 centerdot 4H2O nanostructures with different morphologies on graphene in supercritical CO2. Mater Res Expr 3:65012

    Article  CAS  Google Scholar 

  74. Hwang J, Min D, Yoon D et al (2016) Liquid carbon dioxide-based coating of auniform carbon layer on hierarchical porous MoO2 microspheres and assessment of their electrochemical performance. Chem Eng J 290:335–345

    Article  CAS  Google Scholar 

  75. Jain A, Ong V, Jayaraman S et al (2016) Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. J Supercrit Fluids 107:513–518

    Article  CAS  Google Scholar 

  76. Kondoh E (2018) Cu wiring fabrication by supercritical fluid deposition for MEMS devices. In: Sone M, Masu K (eds) Novel metal electrodeposition and recent applications. Intech Open. https://doi.org/10.5772/intechopen.81636

  77. Xu Q, Yin J, Zhou X et al (2016) Impregnation of ionic liquids in mesoporous silica using supercritical carbon dioxide and co-solvent. RSC Adv 6:101079–101086

    Article  CAS  Google Scholar 

  78. Liu YF, Xu QQ, Wang YQ et al (2018) Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids. J Supercrit Fluids 139:88–96

    Article  CAS  Google Scholar 

  79. Tkalee G, Pantić M, Novak Z et al (2015) Supercritical impregnation of drugs and supercritical fluid deposition of metals into aerogels. J Mater Sci 50:1–12

    Article  CAS  Google Scholar 

  80. Ulusal F, Erünal E, Güzel B (2018) Green preparation of Pd nanoparticles on SBA-15 via supercritical fluid deposition and application on Suzuki-Miyaura cross-coupling reaction. J Nanopart Res 20:219. https://doi.org/10.1007/s11051-018-4325-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani Deepthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deepthi, A., Sathi, V. (2021). Supercritical Fluids as Green Solvents. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_17

Download citation

Publish with us

Policies and ethics