Skip to main content

The Role of Continuous Flow Processing in the Development of Green Chemical Syntheses

  • Chapter
  • First Online:
Green Organic Reactions

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 650 Accesses

Abstract

The importance of reducing the impact that chemical manufacturing has on the environment is growing with an increased appreciation of the need to reduce pollution. One approach that can be used to achieve this goal is to reduce waste at the source of manufacture by employing innovative techniques to effect change on both the method and the technology used throughout the production process. Continuous flow processing offers many fundamental and practical advantages of relevance to the chemical industry, which is constantly searching for controllable and environmentally friendly methods of producing products with a high degree of chemical selectivity, purity and high throughput. This chapter explores how continuous flow processing may revolutionize chemical synthesis, highlighting in particular the environmental benefits of this new technology, which include but not limited to solvent free synthesis, in situ reagent generation, integrated monitoring and separation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Economic UN, Commission SI (2019) The evolving chemicals economy : status and trends relevant for sustainability. pp 24–25

    Google Scholar 

  2. UNEP promotes environmentally sound practices globally and in its own activities (2019)

    Google Scholar 

  3. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312

    Article  CAS  Google Scholar 

  4. Tang S, Bourne R, Smith R et al (2008) The 24 principles of green engineering and green chemistry: improvements productively. Green Chem 10:268–269

    Article  CAS  Google Scholar 

  5. Constable DJ, Jimenez-Gonzalez C (2012) Evaluating the greeness of synthesis. In: Green processes, pp 35–65

    Google Scholar 

  6. Swarr TE, Cespi D, Fava J et al (2017) Application of life cycle assessment to green chemistry objectives. In: Handbook of green chemistry, pp 1–28

    Google Scholar 

  7. Gomollón-bel F (2019) Ten chemical innovations that will change our world. Chem Int 12–17

    Google Scholar 

  8. Akwi FM, Watts P (2018) Continuous flow chemistry: where are we now? recent applications, challenges and limitations. Chem Commun 54(99):13894–13928

    Article  CAS  Google Scholar 

  9. Boros Z, Nagy-gy L, Kátai-fadgyas K, Imre K, Ling I, Nagy T (2019) Continuous flow production in the final step of vortioxetine synthesis. piperazine ring formation on a flow platform with a focus on productivity and scalability. J Flow Chem 9:101–113

    Article  CAS  Google Scholar 

  10. Gioria E, Wisniewski F, Gutierrez L (2019) Journal of environmental chemical engineering microreactors for the continuous and green synthesis of palladium nanoparticles: Enhancement of the catalytic properties. J Environ Chem Eng 7(3):103136

    Article  CAS  Google Scholar 

  11. Roberts EJ, Habas SE, Wang L et al (2017) High-throughput continuous flow synthesis of nickel nanoparticles for the catalytic hydrodeoxygenation of guaiacol. ACS Sustain Chem Eng 5(1):632–639

    Article  CAS  Google Scholar 

  12. Larrea A, Sebastian V, Ibarra A et al (2015) Gas slug microfluidics: a unique tool for ultrafast, highly controlled growth of iron oxide nanostructures. Chem Mater 27(12):4254–4260

    Article  CAS  Google Scholar 

  13. Nikam AV, Dadwal AH (2019) Scalable microwave-assisted continuous flow synthesis of CuO nanoparticles and their thermal conductivity applications as nanofluids. Adv Powder Technol 30(1):13–17

    Article  CAS  Google Scholar 

  14. Peris E, Porcar R, Burguete I et al (2019) Supported ionic liquid-like phases (SILLPs) as immobilised catalysts for the multistep and multicatalytic continuous flow synthesis of chiral cyanohydrins. Chem Cat Chem 11:1–9

    Google Scholar 

  15. Torrelo G, Van Midden N, Stloukal R et al (2014) Immobilized hydroxynitrile lyase: a comparative study of recyclability. Chem Cat Chem 6(4):1096–1102

    CAS  Google Scholar 

  16. Delville MME, Koch K, Van Hest JCM, Rutjes FPJT (2015) Chemoenzymatic flow cascade for the synthesis of protected mandelonitrile derivatives. Org Biomol Chem 13(6):1634–1638

    Article  CAS  Google Scholar 

  17. Nishiyama Y, Fujii A, Mori H (2019) Selective synthesis of azoxybenzenes from nitrobenzenes by visible light irradiation under continuous flow conditions. React Chem Eng 4:2055–2059

    Article  CAS  Google Scholar 

  18. Hommelsheim R, Guo Y, Yang Z et al (2019) Photochemical synthesis blue-light-induced carbene-transfer reactions of diazoalkanes. Angew Commun 58:1203–1207

    Article  CAS  Google Scholar 

  19. Jang S, Vidyacharan S, Gyak K et al (2019) Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds. React Chem Eng 4:1466–1471

    Article  CAS  Google Scholar 

  20. Chiurchiù E, Palmieri A, Petrini M (2019) 3-Alkylated indoles by reduction of sulfonyl indoles under flow chemical conditions Arkivoc iv:69–79

    Google Scholar 

  21. Salvador CEM, Andrade CKZ (2019) A mild, fast, and scalable synthesis of substituted α -acyloxy ketones via multicomponent reaction using a continuous flow approach. Front Chem 7:2–11

    Article  CAS  Google Scholar 

  22. Amini-rentsch L, Vanoli E, Richard-bildstein S et al (2019) A novel and e ffi cient continuous-flow route to prepare trifluoromethylated n - fused heterocycles for drug discovery and pharmaceutical manufacturing. Ind Eng Chem Res 58:10164–10171

    Article  CAS  Google Scholar 

  23. Port Neches (2019): Texas chemical plant blasts lead to evacuation order. BBC News

    Google Scholar 

  24. Zhan W, Ji L, Ge Z et al (2018) A continuous flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron 74(13):1527–1532

    Article  CAS  Google Scholar 

  25. Guttenberger N, Breinbauer R (2017) C-H and C-C bond insertion reactions of diazo compounds into aldehydes. Tetrahedron 73(49):6815–6829

    Article  CAS  Google Scholar 

  26. Breugst M, Huisgen R, Reissig HU (2018) Regioselective 1,3-Dipolar cycloadditions of diazoalkanes with heteroatom-substituted alkynes: theory and experiment. Europ J Org Chem 20:2477–2485

    Article  CAS  Google Scholar 

  27. Rulli P, Benoit G, Allouche EMD et al (2018) Diazo compounds safe and facile access to nonstabilized diazoalkanes using continuous flow technology. Angew Chemie Int Ed 57:5777–5782

    Article  CAS  Google Scholar 

  28. Rullière P, Cyr P, Charette BA (2016) Difluorocarbene addition to alkenes and alkynes in continuous flow. Org Lett 18(9):1988–1991

    Article  CAS  Google Scholar 

  29. Schulenberg JW, Archer S (2011) The chapman rearrangement. In: Organic reactionsp, pp 1–51

    Google Scholar 

  30. Fang J, Ke M, Huang G et al (2019) The Chapman rearrangement in a continuous-flow microreactor. RSC Adv 9:9270–9280

    Article  CAS  Google Scholar 

  31. Xue C, Li J, Lee JP et al (2018) Continuous amination of aryl/heteroaryl halides using aqueous ammonia in a Teflon AF-2400 tube-in-tube micro-flow reactor. React Chem Eng 4(2):346–350

    Article  Google Scholar 

  32. Hartman RL, Liu Y (2019) Reaction kinetics of a water-soluble palladium–β-cyclodextrin catalyst for a suzuki-Miyaura cross- coupling in continuous flow. React Chem Eng 4:1341–1346

    Article  Google Scholar 

  33. Zhang C, Zhu R, Wang Z et al (2019) Continuous flow synthesis of diaryl ketones by coupling of aryl Grignard reagents with acyl chlorides under mild conditions in the ecofriendly solvent 2-methyltetrahydrofuran. RSC Adv 9:2199–2204

    Article  CAS  Google Scholar 

  34. Ferlin F, Hulst MK, Der Van et al (2019) Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chem 21:5298–5305

    Article  CAS  Google Scholar 

  35. Labes R, Mateos C, Battilocchio C et al (2019) Fast continuous alcohol amination employing a hydrogen borrowing protocol. Green Chem 21:59–63

    Article  CAS  Google Scholar 

  36. Tadić J, Mihajlović M, Jovanović M et al (2019) Continuous flow synthesis of some 6- and 1, 6-substituted. J Serb Chem Soc 84(6):531–538

    Article  Google Scholar 

  37. Masuda K, Ichitsuka T, Koumura N et al (2018) Flow fine synthesis with heterogeneous catalysts. Tetrahedron 74(15):1705–1730

    Article  CAS  Google Scholar 

  38. Yue J (2018) Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal Today 308:3–19

    Article  CAS  Google Scholar 

  39. Munirathinam R, Huskens J, Verboom W (2015) Supported catalysis in continuous-flow microreactors. Adv Synth Catal 357:1093–1123

    Article  CAS  Google Scholar 

  40. Haas CP, Müllner T, Kohns R (2017) High-performance monoliths in heterogeneous catalysis with single-phase liquid flow. React Chem Eng 2:498–511

    Article  CAS  Google Scholar 

  41. Nitelet A, Kairouz V, Lebel H et al (2019) Continuous flow chlorination of alkenyl iodides promoted by copper tubing. Synthesis (Stuttg) 51:251–257

    Google Scholar 

  42. Monguchi Y, Ichikawa T, Yamada T (2019) Continuous-flow suzuki-miyaura and mizoroki-heck reactions under microwave heating conditions. Chem Rec 19:3–14

    Article  CAS  Google Scholar 

  43. Sieber JD, Buono F, Brusoe A et al (2019) Application of a preformed Pd-BIDIME precatalyst to suzuki–miyaura cross-coupling reaction in flow. J Org Chem 84:4926–31

    Google Scholar 

  44. Li H, Seechurn CCCJ, Colacot TJ (2012) Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 nobel prize. ACS Catal 2:1147–1164

    Article  CAS  Google Scholar 

  45. Gildner PG, Colacot TJ (2015) Reactions of the 21st century: two decades of innovative catalyst design for palladium-catalyzed cross-couplings. Organometallics 34(23):5497–5508

    Article  CAS  Google Scholar 

  46. Mohanta N, Chaudhari MB, Digrawal NK et al (2019) Rapid and multigram synthesis of vinylogous esters under continuous flow: an access to transetherification and reverse reaction of vinylogous esters. Org Process Res Dev 23:1034–1045

    Article  CAS  Google Scholar 

  47. Miyamura H, Tobita F, Suzuki A (2019) Direct synthesis of hydroquinones from quinones through sequential and continuous-flow hydrogenation-derivatization using heterogeneous Au–Pt nanoparticles as catalysts. Angew Chem Int Ed 58:9220–9224

    Article  CAS  Google Scholar 

  48. Greeves N (1991) Reduction of C=O to CHOH by metal Hydrides. In: Comprehensive organic synthesis, pp 1–22

    Google Scholar 

  49. Roginsky V, Barsukova T (2000) Kinetics of oxidation of hydroquinones by molecular oxygen. Effect of superoxide dismutase. J Chem Soc Perkin Trans 2 (7):1575–1582

    Google Scholar 

  50. Gérardy R, Estager J, Luis P et al (2019) Versatile and scalable synthesis of cyclic organic carbonates under organocatalytic continuous flow conditions. Catal Sci Technol 9(24):6841–6851

    Article  Google Scholar 

  51. Poscharny K, Fabry DC, Heddrich S et al (2018) Machine assisted reaction optimization: a self-optimizing reactor system for continuous- fl ow photochemical reactions. Tetrahedron 74(25):3171–3175

    Article  CAS  Google Scholar 

  52. Heiland JJ, Warias R, Lotter C et al (2017) On-chip integration of organic synthesis and HPLC/MS analysis for monitoring stereoselective transformations at the micro-scale. Lab Chip 17:76–81

    Article  CAS  Google Scholar 

  53. Greig SL, Osimertinib (2016) First global approval. Drugs 76(2):263–273

    Article  CAS  Google Scholar 

  54. Holmes N, Akien GR, Blacker JA et al (2016) Self-optimisation of the final stage in the synthesis of EGFR kinase inhibitor AZD9291 using an automated flow reactor. React Chem Eng 1(4):366–371

    Article  CAS  Google Scholar 

  55. Echtermeyer A, Amar Y, Zakrzewski J (2017) Self-optimisation and model-based design of experiments for developing a C–H activation flow process. Beilstein J Org Chem 13:150–163

    Article  CAS  Google Scholar 

  56. Bristow TWT, Ray AD, O’Kearney-Mcmullan A et al (2014) On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer. J Am Soc Mass Spectrom 25(10):1794–1802

    Article  CAS  Google Scholar 

  57. Rubens M, Vrijsen JH, Laun J et al (2019) Ultra-precise polymer synthesis by autonomous self-optimizing flow reactors. Angew Chemie Int Ed 58(10):3183–3187

    Article  CAS  Google Scholar 

  58. Vural Gürsel I, Kockmann N, Hessel V (2017) Fluidic separation in microstructured devices-concepts and their integration into process flow networks. Chem Eng Sci 169:3–17

    Article  CAS  Google Scholar 

  59. Herath A, Cosford NDP (2017) Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction. Beilstein J Org Chem 13:239–246

    Article  CAS  Google Scholar 

  60. Sagandira RC, Watts P (2017) Synthesis of amines, carbamates and amides by multi-step continuous flow synthesis. Eur J Chem 44:6554–6565

    Google Scholar 

  61. Yang R, Liu C, Wang Y et al (2016) A comprehensive review of micro-distillation methods. Chem Eng J 313:1509–1520

    Article  CAS  Google Scholar 

  62. Escriba M, Hessel V, Maier MC et al (2018) Continuous-flow in-line solvent-swap crystallization of vitamin D 3. 22(2):178–189

    Google Scholar 

  63. Agostino FJ, Krylov SN (2015) Advances in steady-state continuous-flow purification by small-scale free-flow electrophoresis. Trends Anal Chem 72:68–79

    Article  CAS  Google Scholar 

  64. Marsini MA, Buono FG, Lorenz JC et al (2017) Development of a concise, scalable synthesis Curtius rearrangement 1454–1461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akwi, F.M., Watts, P. (2021). The Role of Continuous Flow Processing in the Development of Green Chemical Syntheses. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_15

Download citation

Publish with us

Policies and ethics