Skip to main content

Hybrid Renewable Energy System Investigation Based on Power Converters Losses

  • Conference paper
  • First Online:
WITS 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 745))

  • 1300 Accesses

Abstract

Given the renewable sources complementarity, hybrid renewable energy systems (HRES) have been mostly used to address the limitations of single renewable source in terms of stability and reliability. In this regards many researches have been conducted to improve the hybrid efficiency. The aim of this work is to perform a comparative study of HRES architectures based on a qualitative investigation of the power converters efficiency used in each topology. Numerical application is performed based on technical features of converters in order to distinguish the best HRES configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RENEWABLES 2019: global status report. www.ren21.net

  2. Berringer K, Marvin J, Perruchoud P (1995) Semiconductor power losses in AC inverters. In: IAS ’95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting, Orlando, FL, USA, 1995, vol 1, pp 882–888. https://doi.org/10.1109/IAS.1995.530391

  3. Zeb K et al (2018) A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system. Renew Sustain Energy Rev 94:1120–1141. https://doi.org/10.1016/j.rser.2018.06.053

  4. Liu Q et al (2009) Solar and wind energy resources and prediction. J Renew Sustain Energy 1(4):043105. https://doi.org/10.1063/1.3168403

    Article  Google Scholar 

  5. Wu TF, Chang CH, Lin LC, Yu GR, Chang YR (2013) DC-bus voltage control with a three-phase bidirectional inverter for dc distribution systems. IEEE Trans. Power Electron. 28(4):1890–1899. avr. 2013. https://doi.org/10.1109/TPEL.2012.2206057

  6. Muselli M, Notton G, Poggi P, Louche A (2000) PV-hybrid power systems sizing incorporating battery storage: an analysis via simulation calculations. Renew Energy 20(1):1–7. https://doi.org/10.1016/S0960-1481(99)00094-4

  7. Ashari M, Nayar CV (1999) An optimum dispatch strategy using sett points for a photovoltaic (PV)–diesel–battery hybrid power system. Solar Energy 66(1):1–9. https://doi.org/10.1016/S0038-092X(99)00016-X

  8. Ahmed I, ElAmine SM, Saïd B, Youcef H (2017) Différentes Configurations du Système PV pour l’Alimentation Sans Interruption (ASI): Application au Relais GSM, p 10

    Google Scholar 

  9. Wichert B, Dymond M, Lawrance W, Friese T (2001) Development of a test facility for photovoltaic-diesel hybrid energy systems. Renew Energy 22(1–3):311–319. https://doi.org/10.1016/S0960-1481(00)00024-0

  10. Elhadidy MA, Shaahid SM (1998) Feasibility of hybrid (WIND + SOLAR) power systems for DIIAHRAN, Saudi Arabia, p 7. https://doi.org/10.1016/S0960-1481(98)00344-9

  11. Kaabeche A, Belhamel M, Ibtiouen R, Moussa S (2006) Optimisation d’un système hybride (éolien – photovoltaïque) totalement autonome. Revue des Energies Renouvelables 9(3):199–209

    Google Scholar 

  12. Ekren O, Ekren BY (2008) Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Appl Energy 85(11):1086–1101. https://doi.org/10.1016/j.apenergy.2008.02.016

  13. Mar B (1999) Hybrid solar-wind domestic power generating system: a case study. Renew Energy 17:355–358. https://doi.org/10.1016/S0960-1481(98)00123-2

    Article  Google Scholar 

  14. Pires VF, Silva JFA (2002) Teaching nonlinear modeling, simulation, and control of electronic power converters using MATLAB/SIMULINK. IEEE Trans Educ 45(3):253–261. https://doi.org/10.1109/TE.2002.1024618

  15. Douangsyla S, Indarack P, Kanthee A, Kando M, Kittiratsatcha S, Kinnares V (2004) Modeling for PWM voltage source converter controlled power transfer. In: IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004, Sapporo, Japan, vol 2, pp 875–878. https://doi.org/10.1109/ISCIT.2004.1413844

  16. Zhou S, Rincon-Mora GA (2006) A high efficiency, soft switching DC-DC converter with adaptive current-ripple control for portable applications. IEEE Trans Circuits Syst II 53(4):319–323. https://doi.org/10.1109/TCSII.2005.859572

  17. Wu H, Sechilariu M, Locment F (2017) Influence of dynamic efficiency in the DC microgrid power balance. Energies 10(10):1563. https://doi.org/10.3390/en10101563

  18. Chen Z, Boroyevich D, Burgos R, Wang F (2009) Characterization and modeling of 1.2 kv, 20 A SiC MOSFETs. In: 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, Sept 2009, pp 1480–1487. https://doi.org/10.1109/ECCE.2009.5316106

  19. Biela J, Schweizer M, Waffler S, Kolar JW (2011) SiC versus Si—evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors. IEEE Trans Ind Electron 58(7): 2872–2882. https://doi.org/10.1109/TIE.2010.2072896

  20. Wintrich A, Nicolai U, Tursky W, Reimann T (2015) Application manual power semiconductors, 2nd revised edition. ISLE Verlag, Ilmenau

    Google Scholar 

  21. Forest F et al (2006) Use of opposition method in the test of high-power electronic converters. IEEE Trans Ind Electron 53(2):530–541. https://doi.org/10.1109/TIE.2006.870711

  22. Lopez M, Morales D, Vannier J-C, Sadarnac D (2007) Influence of power converter losses evaluation in the sizing of a hybrid renewable energy system. In: 2007 International Conference on Clean Electrical Power, Capri, Italy, May 2007, pp 249–254. https://doi.org/10.1109/ICCEP.2007.384218

  23. Nanakos AC, Tatakis EC, Papanikolaou NP (2012) A weighted-efficiency-oriented design methodology of flyback inverter for AC photovoltaic modules. IEEE Trans Power Electron 27(7):3221–3233. https://doi.org/10.1109/TPEL.2011.2182211

  24. Valentini M, Raducu A, Sera D, Teodorescu R (2008) PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation. In: 2008 11th international conference on optimization of electrical and electronic equipment, Brasov, Romania, May 2008, pp 433–438. https://doi.org/10.1109/OPTIM.2008.4602445

  25. Bierhoff MH, Fuchs FW (2004) Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation. In: 35th Annual IEEE power electronics specialists conference, p 7

    Google Scholar 

  26. Casanellas F (1994) Losses in PWM inverters using IGBTs, p 5. IEE Proc Electr Power Appl 141(5). https://doi.org/10.1049/ip-epa:19941349

  27. Andersen RL, Lazzarin TB, Barbi I (2013) A 1-kW step-up/step-down switched-capacitor AC–AC converter. IEEE Trans Power Electron 28(7):3329–3340. https://doi.org/10.1109/TPEL.2012.2222674

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilham Tyass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tyass, I., Bouamrane, O., Raihani, A., Mansouri, K., Khalili, T. (2022). Hybrid Renewable Energy System Investigation Based on Power Converters Losses. In: Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., Khamlichi, Y. (eds) WITS 2020. Lecture Notes in Electrical Engineering, vol 745. Springer, Singapore. https://doi.org/10.1007/978-981-33-6893-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6893-4_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6892-7

  • Online ISBN: 978-981-33-6893-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics