Skip to main content

A Critical Review of the Intelligent Computing Methods for the Identification of the Sleeping Disorders

  • Conference paper
  • First Online:
Computational Vision and Bio-Inspired Computing

Abstract

The intelligence computing techniques and the knowledge-centered systems are considered in the process of identifying the different complications in a clinical setting. In this article, a critical review of the different intelligent computing techniques, which are utilized in the detection of the sleeping disorders, will be analyzed. The core issue in this contribution is centered on the identification of the sleeping disorders such as snoring, parasomnia, insomnia, and sleep apnea. The mostly used diagnostic techniques by medical researchers are centered on the knowledge-based systems (KBSs), rule-based reasoning (RBR), the fuzzy logic (FL), case-based reasoning (CBR), artificial neural networks (ANNs), multi-layered perceptron (MLP), genetic algorithm (GA), neural networks (NNs), k-nearest neighbor (K-NN), data mining (DM), Bayesian network (BN), and the support vector machine (SVM), including other many methods integrated with the medical sector. As for the ancient methods, questionnaires are utilized for the identification of different forms of disorders, which have now been replaced with the above methods. This is meant to enhance sensitivity, specificity, and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aoyagi, Medical image assessment apparatus, ultrasonic image assessment apparatus, magnetic resonance image assessment apparatus, medical image processing apparatus, and medical image processing method. J. Acoust. Soc. Am. 133(5), 3220 (2013). https://doi.org/10.1121/1.4803793

    Article  Google Scholar 

  2. B. Lelieveldt, N. Karssemeijer, Information processing in medical image assessment 2007. Med. Image Anal. 12(6), 729–730 (2008). https://doi.org/10.1016/j.media.2008.03.005

    Article  Google Scholar 

  3. P.L. Aaron, S. Bonni, An evaluation of wearable technological advancement in medical practices. J. Med. Image Comput. 58–65 (2020)

    Google Scholar 

  4. Web based analysis of critical medical care technology. J. Med. Image Comput. 66–73 (2020)

    Google Scholar 

  5. A. Haldorai, S. Anandakumar, Image segmentation and the projections of graphic centered approaches in medical image processing. J. Med. Image Comput. 74–81 (2020)

    Google Scholar 

  6. C. Hung, Computational algorithms on medical image processing. Current Med. Image Assess. Form. Current Med. Image Assess. Rev. 16(5), 467–468 (2020). https://doi.org/10.2174/157340561605200410144743

    Article  Google Scholar 

  7. F. Aubry, V. Chameroy, R. Di Paola, A medical image object-oriented database with image processing and automatic reorganization capabilities. Comput. Med. Image Assess. Graph. 20(4), 315–331 (1996). https://doi.org/10.1016/s0895-6111(96)00022-5

    Article  Google Scholar 

  8. P. Jannin, J. Fitzpatrick, D. Hawkes, X. Pennec, R. Shahidl, M. Vannier, Validation of medical image processing in image-guided therapy. IEEE Trans. Med. Image Assess. 21(12), 1445–1449 (2002). https://doi.org/10.1109/tmi.2002.806568

    Article  Google Scholar 

  9. K. Drukker, Applied medical image processing, second edition: a basic course. J. Med. Image Assess. 1(2), 029901 (2014). https://doi.org/10.1117/1.jmi.1.2.029901

    Article  Google Scholar 

  10. P. Jannin, Validation in medical image processing: methodological issues for proper quantification of uncertainties. Current Med. Image Assess. Rev. 8(4), 322–330 (2012). https://doi.org/10.2174/157340512803759785

    Article  Google Scholar 

  11. M. Goris, Medical image acquisition and processing: clinical validation. Open J. Med. Image Assess. 04(04), 205–209 (2014). https://doi.org/10.4236/ojmi.2014.44028

    Article  Google Scholar 

  12. T. Aach, Digital image acquisition and processing in medical x-ray image assessment. J. Electron. Image Assess. 8(1), 7 (1999). https://doi.org/10.1117/1.482680

    Article  Google Scholar 

  13. H. Barrett, A. Gmitro, Information processing in medical image assessment. Image Vis. Comput. 12(6), 315 (1994). https://doi.org/10.1016/0262-8856(94)90055-8

    Article  Google Scholar 

  14. T.K. Araghi, Digital image watermarking and performance analysis of histogram modification based methods. Intell. Comput. 631–637 (20180

    Google Scholar 

  15. G. Yu, Z. Wei Xu, J. Xiong, Modeling and safety test of safety-critical software, in 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haldorai, A., Ramu, A. (2021). A Critical Review of the Intelligent Computing Methods for the Identification of the Sleeping Disorders. In: Smys, S., Tavares, J.M.R.S., Bestak, R., Shi, F. (eds) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing, vol 1318. Springer, Singapore. https://doi.org/10.1007/978-981-33-6862-0_63

Download citation

Publish with us

Policies and ethics