Skip to main content

Utilization of Natural Compounds for Treatment of Tuberculosis-I

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases
  • 760 Accesses

Abstract

Tuberculosis (TB) is a contagious infection caused by Mycobacterium tuberculosis. It is a highly communicable disease which affects the lungs but if left untreated can also spread to brain or spine. According to the World Health Organization, TB is considered as one of the top ten causes of death throughout the world with ten million cases reported annually. Although TB occurs in most parts of the world yet two thirds of the new cases reported, happened in India, China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh, and South Africa. TB is treated with a combination of antibiotics which has to be consumed by patients over a year or more. At present the drugs and vaccines available for treatment of TB has no significant effect on controlling the disease due to the occurrence of multiple drug-resistant (Mdr) strains. Hence, this created an urgent need to develop drugs of natural origin. Drugs from natural sources have exceptionally rich chemical diversity and a wide spectrum antimicrobial activity. The current chapter states the recent developments that had occurred in the treatment of TB using natural compounds and also discusses the various natural anti-mycobacterial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutta NK, Karakousis PC (2012) Tuberculosis chemotherapy: present situation, possible solutions, and progress towards a TB-free world. Indian J Medial Microbiol 30(3):261–263

    Article  Google Scholar 

  2. https://www.who.int/campaigns/world-tb-day/2020. Accessed 06 Oct 2020.

  3. Sandhu GK (2011) Tuberculosis: current situation, challenges and overview of its control programs in India. J Glob Infect Dis 3(2):143–150

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tripathi RP, Tewari N, Dwivedi N, Tiwari VK (2005) Fighting tuberculosis: an old disease with new challenges. Med Res Rev 25(1):93–131

    Article  CAS  PubMed  Google Scholar 

  5. https://www.who.int/tb/features_archive/change-treatment-drug-resistant-tb/en/. Accessed 07 Oct 2020

  6. Quan D, Nagalingam G, Payne R, Triccas JA (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220

    Article  CAS  PubMed  Google Scholar 

  7. Meena LS, Rajni (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. Fed Eur Biochem Soc 277:2416–2427

    CAS  Google Scholar 

  8. Kaur T, Sharma P, Gupta GK, Ntie-Kang F, Kumar D (2019) Treatment of tuberculosis by natural drugs: a review. Plant Arch 19(2):2168–2176

    Google Scholar 

  9. Tousif S, Singh DK, Mukherjee S, Ahmad S, Arya R, Nanda R, Das G (2017) Nanoparticle-formulated curcumin prevents Posttherapeutic disease reactivation and reinfection with Mycobacterium tuberculosis following isoniazid therapy. Front Immunol 8:739. https://doi.org/10.3389/fimmu.2017.00739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shrestha PM, Dhillion SS (2003) Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. J Ethnopharmacol 86:81–96

    Article  PubMed  Google Scholar 

  11. Rinne E-M (2001) Water and healing: experiences from the traditional healers in Ile-Ife. Niger Nordic J Afr Stud 10:41–65

    Google Scholar 

  12. Tabuti JRS, Kukunda CB, Waako PJ (2010) Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J Ethnopharmacol 127:130–136

    Article  PubMed  Google Scholar 

  13. Semenya SS, Maroyi A (2013) Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo Province, South Africa. Afr J Trad Complement Altern Med 10(2):316–323

    Google Scholar 

  14. Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PGA (2015) Medicinal plants used to treat TB in Ghana. Int J Mycobacteriol 4:116–123

    Article  PubMed  Google Scholar 

  15. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z (2019) Phenolic compounds as promising drug candidates in tuberculosis therapy. Molecules 24(13):2449. https://doi.org/10.3390/molecules24132449

    Article  CAS  PubMed Central  Google Scholar 

  16. Teixeira ÉW, Message D, Meira RM (2019) An alternative fixing agent for identifying the botanical origin of propolis. Appl Plant Sci 7(12):11309. https://doi.org/10.1002/aps3.11309

    Article  Google Scholar 

  17. Ganihigama DU, Sureram S, Sangher S, Hongmanee P, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2015) Antimycobacterial activity of natural products and synthetic agents: pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. Eur J Med Chem 89:1–12. https://doi.org/10.1016/j.ejmech.2014.10.026

    Article  CAS  PubMed  Google Scholar 

  18. Prakash S, Bhimba BV (2005) Pharmaceutical development of novel microalgal compounds for Mdr M. tuberculosis. Nat Prod Radiance 4(4):264–269

    Google Scholar 

  19. Smolarz HD, Swakto-Ossar M, Ginalska G, Medynska E (2013) Antimycobacterial effect of extract and its components from Rheum rhaponticum. J AOAC Int 96(1):155–160

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Hu J, Chen Y, Ge B (2019) Role of Sirt1 in innate immune mechanisms against Mycobacterium tuberculosis via the inhibition of TAK1 activation. Arch Biochem Biophys 667(30):49–58

    Article  CAS  PubMed  Google Scholar 

  21. Charkraborty S, Stalin S, Das N, Choudhury ST, Ghosh S, Swarnakar S (2012) The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 33:2991–3001

    Article  CAS  Google Scholar 

  22. Shukla H, Kumar V, Singh AK, Rastogi S, Khan SR, Siddiqi MI, Akhtar MS (2015) Isocitrate lyase of Mycobacterium tuberculosis is inhibited by quercetin through binding at N-terminus. Int J Biol Macromol 78:137–141

    Article  CAS  PubMed  Google Scholar 

  23. Safwat NA, Kashef MT, Aziz RK, Amer KF, Ramadan MA (2018) Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L., inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis 108:106–113

    Article  CAS  PubMed  Google Scholar 

  24. Butov DO, Zaitseva SI, Pitenko MM, Stepanenko GL, Butova TS (2015) Morphological changes in experimental tuberculosis resulting from treatment with quercetin and polyvinylpyrrolidone. Int J Mycobacteriol 4:296–301

    Article  PubMed  Google Scholar 

  25. Sasikumar K, Ghosh AR, Dusthackeer A (2018) Antimycobacterial potentials of quercetin and rutin against Mycobacterium tuberculosis H37Rv. 3 Biotech 8(10):427

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pawar A, Jha P, Chpra M, Chaudhury U, Saluja D (2020) Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Sci Rep 10:949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 11:331–341

    Article  CAS  PubMed  Google Scholar 

  28. Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV (2004) Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280(10):9409–9415

    Article  PubMed  CAS  Google Scholar 

  29. Gupta PK, Kulkarni S, Rajan R (2013) Inhibition of intracellular survival of multi drug resistant clinical isolates of Mycobacterium tuberculosis in macrophages by curcumin. Open Antimicrob Agents J 4:1–5

    Article  Google Scholar 

  30. Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, Giesler K, Bommarius B, Shinnick TM, Snyder JP, Liotta DC, Kalman D (2015) Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. Eur J Med Chem 92:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai X, Oberley-Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, Chan ED (2016) Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology 21(5):951–957

    Article  PubMed  Google Scholar 

  32. Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P, Deshmukh B, Shinde V, Bishayee A, Deshmukh RR (2020) The war against tuberculosis: a review of natural compounds and their derivatives. Molecules 25:3011

    Article  CAS  PubMed Central  Google Scholar 

  33. Lawal TO, Adenyl BA, Wan B, Franzblau SG, Mahady GB (2011) In-vitro susceptibility of Mycobacterium Tuberculosis to extracts of Uvaria Afzelli Scott Elliot and Tetracera Alnifolia Willd. Afr J Biomed Res 14:17–21

    Google Scholar 

  34. Khlifi D, Hamdi M, El Hayouni A, Cazaux S, Souchard JP, Couderc F, Baouajila J (2011) Global chemical composition and antioxidant and anti-tuberculosis activities of various extracts of Globularia alypum L. (Globulariaceae) leaves. Molecules 16:10592–10603

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fyhrquist P, Laakso I, Marco SG, Julkunen-Tiitto R, Hiltunen R (2014) Antimycobacterial activity of ellagitannin and ellagic acid derivate rich crude extracts and fractions of five selected species of Terminalia used for treatment of infectious diseases in African traditional medicine. S Afr J Bot 90:1–16

    Article  CAS  Google Scholar 

  36. Reiter J, Levina N, Van der Linden M, Gruhlke M, Martin C, Slusarenko AJ (2017) Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 22(10):1711

    Article  PubMed Central  CAS  Google Scholar 

  37. Fatima S, Dwivedi VP (2020) Allicin as an adjunct immunotherapy against tuberculosis. J Cell Immunol 2(4):178–182

    Google Scholar 

  38. Ratnakar P, Murthy PS (1995) Purification and mechanism of action of antitubercular principle from garlic (Allium Sativum) active against isoniazid susceptible and resistant Mycobacterium tuberculosis H37Rv. Indian J Clin Biochem 10(1):34–38

    Article  CAS  Google Scholar 

  39. Hasan N, Yusuf N, Toossi Z, Islam N (2006) Suppression of Mycobacterium tuberculosis induced reactive oxygen species (ROS) and TNF-α mRNA expression in human monocytes by allicin. FEBS Lett 580:2517–2522

    Article  CAS  PubMed  Google Scholar 

  40. Hasan N, Siddiqui U, Toossi Z, Khan S, Iqbal J, Islam N (2007) Allicin-induced suppression of Mycobacterium tuberculosis 85B mRNA in human monocytes. Biochem Biophys Res Commun 355:471–476

    Article  CAS  PubMed  Google Scholar 

  41. Hannan A, Ullah MI, Usman M, Hussain S, Absar M, Javed K (2011) Anti-mycobacterial activity of garlic (Allium Sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium Tuberculosis. Pak J Pharm Sci 24(1):81–85

    PubMed  Google Scholar 

  42. Dwivedi VP, Bhattacharya D, Singh M, Bhaskar A, Kumar S, Fatima S, Sobia P, Kaer LV, Das G (2019) Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. J Ethnopharmacol 243:111634

    Article  CAS  PubMed  Google Scholar 

  43. Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 30:49–82

    Google Scholar 

  44. Teixeira ÉW, Message D, Meira RM (2019) Methacrylate: an alternative fixing agent for identifying the botanical origin of propolis. Appl Plant Sci 7(12):e11309

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zabaiou N, Fouache A, Trousson A, Baron S, Zellagui A, Lahouel M, Lobaccaro J-MA (2017) Biological properties of propolis extracts: something new from an ancient product. Chem Phys Lipids 207:214–222

    Article  CAS  PubMed  Google Scholar 

  46. Scheller S, Dworniczak S, Waldemar-Klimmek K, Rajca M, Tomczyk A, Shani J (1999) Synergism between ethanolic extract of propolis (EEP) and anti-tuberculosis drugs on growth of mycobacteria. Z Naturforschung C, J Biosci 54:549–553

    Article  CAS  Google Scholar 

  47. Bharti U, Kumar NR, Kaur J (2017) Protective effect of bee propolis against anti-tuberculosis drugs (rifampicin and isoniazid)-induced hematological toxicity in Sprague Dawley rats. Asian J Pharm Clin Res 10:188–190

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors would like to acknowledge principal, Poona college of Pharmacy for his consistent encouragement, co-operation and suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, M., Pawar, A., Sahoo, K., Kumar, D. (2021). Utilization of Natural Compounds for Treatment of Tuberculosis-I. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_7

Download citation

Publish with us

Policies and ethics