Skip to main content

Role of Medicinal Plants in Pulmonary Hypertension

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases

Abstract

Pulmonary hypertension is a chronic and advanced disease associated with increased resistance to the pulmonary vasculature, which causes changes in the morphology of the pulmonary arteries and is a major reason for death worldwide. It is associated more in women than in men. It remains asymptomatic until the harmful effects of hypertension such as stroke, myocardial infarction, etc. are observed. Synthetic drugs are used to overcome this disease, but they produce serious side effects, so alternative medicines from medicinal plants need to be developed. Traditionally, medicinal plants have been used since ancient time and are shown to be effective. Examples of plants include Moringa Oleifera Lam, Allium sativum L., Terminalia Arjuna, Withania Somnifera, and many more. They act by decreasing SOD, increasing nitric oxide levels, and also lowering the BCL2/BAX ratio. This chapter focuses on the recent discovery of medicinal plants and its phytoconstituents used in the treatment of pulmonary hypertension and the pathways involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oliveira AC, Richards EM, Raizada MK (2020) Pulmonary hypertension: pathophysiology beyond the lung. Pharmacol Res 151:104518

    Article  CAS  PubMed  Google Scholar 

  2. Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ (2018) Revisiting the role of TRP, Orai, and ASIC channels in the pulmonary arterial response to hypoxia. Front Physiol 9:486

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8(8):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Julian R, Mirsalimi S (1992) Blood oxygen concentration of fast-growing and slow-growing broiler chickens, and chickens with ascites from right ventricular failure. Avian Dis 36(3):730–732

    Article  CAS  PubMed  Google Scholar 

  5. Powell FL, Hastings RH, Mazzone RW (1985) Pulmonary vascular resistance during unilateral pulmonary arterial occlusion in ducks. Am J Physiol Regul Integr Comp Physiol 249(1):R39–R43

    Article  CAS  Google Scholar 

  6. Lee AJ, Chiao TB, Tsang MP (2005) Sildenafil for pulmonary hypertension. Ann Pharmacother 39(5):869–884

    Article  CAS  PubMed  Google Scholar 

  7. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37(1):183–188

    Article  CAS  PubMed  Google Scholar 

  8. Bloodworth NC, Clark CR, West JD, Snider JC, Gaskill C, Shay S, Scott C, Bastarache J, Gladson S, Moore C, D'Amico R, Brittain EL, Tanjore H, Blackwell TS, Majka SM, Merryman WD (2018) Bone marrow-derived proangiogenic cells mediate pulmonary arteriole stiffening via serotonin 2B receptor dependent mechanism. Circ Res 123:e51–e64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Endo J, Sano M, Fujita J, Hayashida K, Yuasa S, Aoyama N, Takehara Y, Kato O, Makino S, Ogawa S, Fukuda K (2007) Bone marrow derived cells are involved in the pathogenesis of cardiac hypertrophy in response to pressure overload. Circulation 116(10):1176–1184

    Article  PubMed  Google Scholar 

  10. Han B, Copeland CA, Kawano Y, Rosenzweig EB, Austin ED, Shahmirzadi L, Tang S, Raghunathan K, Chung WK, Kenworthy AK (2016) Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy. Traffic 17(12):1297–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, Hazen SL, Loyd J, Tuder R, Erzurum SC (2012) Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood 120:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guignabert C, Raffestin B, Benferhat R, Raoul W, Zadigue P, Rideau D, Hamon M, Adnot S, Eddahibi S (2005) Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation 111(21):2812–2819

    Article  CAS  PubMed  Google Scholar 

  13. Sastry BK, Narasimhan C, Reddy NK, Raju BS (2004) Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol 43:1149–1153

    Article  CAS  PubMed  Google Scholar 

  14. Goel R, Kim S, Rigatto K, Shapiro B, Ray J, Qi Y, Gazzana MB, Knorst MB, Richards EM, Pepine CJ, Raizada MK (2017) Increased gut dysbiosis and leakiness in patients with pulmonary arterial hypertension. In: Council on hypertension. Circulation, San Diego

    Google Scholar 

  15. McLaughlin VV, Oudiz RJ, Frost A, Tapson VF, Murali S, Channick RN et al (2006) Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med 174(11):1257–1263

    Article  CAS  PubMed  Google Scholar 

  16. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Hervé P (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 40(4):780–788

    Article  CAS  PubMed  Google Scholar 

  17. Pepke-Zaba J, Gilbert C, Collings L, Brown MC (2008) Sildenafil improves health-related quality of life in patients with pulmonary arterial hypertension. Chest 133(1):183–189

    Article  CAS  PubMed  Google Scholar 

  18. Horníčková J, Kubec R, Cejpek K, Velíšek J, Ovesna J, Stavělíková H (2010) Profiles of S-alk(en)yl cysteine sulfoxides in various garlic genotypes. Czech J Food Sci 28(4):298–308

    Article  Google Scholar 

  19. Reuter H, Koch H, Lawson L (1996) The science and therapeutic application of Allium sativum L. and related species. Williams and Wilkins, Baltimore

    Google Scholar 

  20. Kourounakis PN, Rekka EA (1991) Effect on active oxygen species of alliin and Allium sativum (garlic) powder. Res Commun Chem Pathol Pharmacol 74(2):249–252

    CAS  PubMed  Google Scholar 

  21. Fallon MB, Abrams GA, Abdel-Razek TT, Dai J, Chen S-J, Chen Y-F et al (1998) Garlic prevents hypoxic pulmonary hypertension in rats. Am J Physiol Lung Cell Mol Physiol 275(2):L283–L287

    Article  CAS  Google Scholar 

  22. Lanzotti V, Scala F, Bonanomi G (2014) Compounds from allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13(4):769–791

    Article  CAS  Google Scholar 

  23. Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK (2004) Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol 94(4):184–190

    Article  CAS  PubMed  Google Scholar 

  24. Kaur G, Singh N, Samuel SS, Bora HK, Sharma S, Pachauri SD et al (2015) Withania somnifera shows a protective effect in monocrotaline-induced pulmonary hypertension. Pharm Biol 53(1):147–157

    Article  PubMed  Google Scholar 

  25. Ojha SK, Arya DS (2009) Withania somnifera Dunal (Ashwagandha): a promising remedy for cardiovascular diseases. World J Med Sci 4(2):156–158

    Google Scholar 

  26. Mohanty IR, Arya DS, Gupta SK (2008) Withania somnifera provides cardioprotection and attenuates ischemia–reperfusion induced apoptosis. Clin Nutr 27(4):635–642

    Article  PubMed  Google Scholar 

  27. Tan X, Chai J, Bi S-C, Li J-J, Li W-W, Zhou J-Y (2012) Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 193(2):420–425

    Article  CAS  PubMed  Google Scholar 

  28. Chu C-C, Wu W-S, Shieh J-P, Chu H-L, Lee C-P, Duh P-D (2017) The anti-inflammatory and vasodilating effects of three selected dietary organic sulfur compounds from allium species. J Funct Biomater 8(1):5

    Article  PubMed Central  CAS  Google Scholar 

  29. Han C, Qi J, Gao S, Li C, Ma Y, Wang J et al (2017) Vasodilation effect of volatile oil from Allium macro stem on Bunge are mediated by PKA/NO pathway and its constituent dimethyl disulfide in isolated rat pulmonary arterials. Fitoterapia 120:52–57

    Article  CAS  PubMed  Google Scholar 

  30. Dwivedi S (2007) Terminalia arjuna Wight and Arn. A useful drug for cardiovascular disorders. J Ethnopharmacol 114(2):114–129

    Article  CAS  PubMed  Google Scholar 

  31. Varghese A, Savai J, Pandita N, Gaud R (2015) In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol Rep 2:806–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapoor D, Vijayvergiya R, Dhawan V (2014) Terminalia arjuna in coronary artery disease: ethnopharmacology, pre-clinical, clinical and safety evaluation. J Ethnopharmacol 155(2):1029–1045

    Article  PubMed  Google Scholar 

  33. Pawar R, Bhutani K (2005) Effect of oleanane triterpenoids from Terminalia arjuna cardioprotective drug on the process of respiratory oxy burst. Phytomedicine 12(5):391–393

    Article  CAS  PubMed  Google Scholar 

  34. Sobolewska D, Podolak I, Makowska-Wąs J (2015) Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochem Rev 14(1):81–97

    Article  CAS  PubMed  Google Scholar 

  35. Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101(11):1084–1095

    Article  CAS  PubMed  Google Scholar 

  36. Lines T, Ono M (2006) FRS 1000, an extract of red onion peel, strongly inhibits phosphodiesterase 5A (PDE 5A). Phytomedicine 13(4):236–239

    Article  CAS  PubMed  Google Scholar 

  37. Boué SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter-Wientjes CH et al (2003) Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J Agric Food Chem 51(8):2193–2199

    Article  PubMed  CAS  Google Scholar 

  38. Jiang Y, Yang Y (2016) Trifolium pratense isoflavones improve pulmonary vascular remodelling in broiler chickens. J Anim Physiol Anim Nutr 100(6):1159–1168

    Article  CAS  Google Scholar 

  39. Simoncini T, Fornari L, Mannella P, Caruso A, Garibaldi S, Baldacci C et al (2005) Activation of nitric oxide synthesis in human endothelial cells by red clove extracts. Menopause 12(1):69–77

    Article  PubMed  Google Scholar 

  40. Wang L-D, Qiu X-Q, Tian Z-F, Zhang Y-F, Li H-F (2008) Inhibitory effects of genistein and resveratrol on guinea pig gallbladder contractility in vitro. World J Gastroenterol 14(31):4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang Q, Zuo Z, Harrison F, Chow MSS (2002) Hawthorn. J Clin Pharm Ther 42(6):605–612

    Google Scholar 

  42. Salehi S, Long SR, Proteau PJ, Filtz TM (2009) Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay. J Nat Med 63(1):1–8

    Article  PubMed  Google Scholar 

  43. Surai P (2014) Polyphenol compounds in the chicken/animal diet: from the past to the future. J Anim Physiol Anim Nutr 98(1):19–31

    Article  CAS  Google Scholar 

  44. Ahmadipour B, Kalantar M, Hosseini SM, Ur Rehman Z, Farmanullah F, Kalantar MH et al (2019) Hawthorn (Crataegus oxyacantha) flavonoid extract as an effective medicinal plant derivative to prevent pulmonary hypertension and heart failure in broiler chickens. Kafkas Univ. Vet. Fak Derg 25(3):321–328

    Google Scholar 

  45. Temkitthawon P, Changwichit K, Khorana N, Viyoch J, Suwanborirux K, Ingkaninan K (2017) Phenanthrenes from Eulophia macrobulbon as novel phosphodiesterase-5 inhibitors. Nat Prod Commun 12(1):79–82

    Google Scholar 

  46. Narkhede AN, Kasote DM, Kuvalekar AA, Harsulkar AM, Jagtap SD (2016) Amarkand: a comprehensive review on its ethnopharmacology, nutritional aspects, and taxonomy. J Intercult Ethnopharmacol 5(2):198–204

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wisutthathum S, Demougeot C, Totoson P, Adthapanyawanich K, Ingkaninan K, Temkitthawon P et al (2018) Eulophia macrobulbon extract relaxes rat isolated pulmonary artery and protects against monocrotaline-induced pulmonary arterial hypertension. Phytomedicine 50:157–165

    Article  CAS  PubMed  Google Scholar 

  48. Lay S, Chiu JH, Shiao MS, Lui WY, Wu CW (2003) Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line. Planta Med 69(01):26–32

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Foo LY (2002) Polyphenolics of salvia—a review. Phytochemistry 59(2):117–140

    Article  CAS  PubMed  Google Scholar 

  50. Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmacological review of a medicinal plant. J Med Plant Res 4(25):2813–2820

    CAS  Google Scholar 

  51. Wang Y, Cao S-H, Cui Y-J, Kong L-K, Tian H, Cai H-X et al (2015) Salvia miltiorrhiza Bge. f. alba Ameliorates the progression of monocrotaline-induced pulmonary hypertension by protecting endothelial injury in rats. Tohoku J Exp Med 236(2):155–162

    Article  CAS  PubMed  Google Scholar 

  52. Shojaei ZA, Ebrahimi A, Salimi M (2011) Chemical composition of three ecotypes of wild celery (Kelussia odoratissima). J Herb Spices Med Plants 17(1):62–68

    Article  CAS  Google Scholar 

  53. Pirbalouti AG, Setayesh M, Siahpoosh A, Mashayekhi H (2013) Antioxidant activity, total phenolic and flavonoids contents of three herbs used as condiments and additives in pickles products. Herb Pol 59(3):51–62

    Article  CAS  Google Scholar 

  54. Ahmadipour B, Hassanpour H, Asadi E, Khajali F, Rafiei F, Khajali F (2015) Kelussia odoratissima Mozzaf a promising medicinal herb to prevent pulmonary hypertension in broiler chickens reared at high altitude. J Ethnopharmacol 159:49–54

    Article  PubMed  Google Scholar 

  55. Gupta R, Dubey D, Kannan G, Flora S (2007) Concomitant administration of Moringa oleifera seed powder in the remediation of arsenic-induced oxidative stress in mouse. Cell Biol 31(1):44–56

    CAS  Google Scholar 

  56. Chen K-H, Chen Y-J, Yang C-H, Liu K-W, Chang J-L, Pan S-F et al (2012) Attenuation of the extract from Moringa oleifera on monocrotaline-induced pulmonary hypertension in rats. Chin J Physiol 55(1):22–30

    Article  CAS  PubMed  Google Scholar 

  57. Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F (1998) Hypotensive constituents from the pods of Moringa oleifera. Planta Med 64(03):225–228

    Article  CAS  PubMed  Google Scholar 

  58. Stohs SJ, Hartman MJ (2015) Review of the safety and efficacy of Moringa oleifera. Phytother Res 29(6):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nan X, Su S, Ma K, Ma X, Wang X, Zhaxi D et al (2018) Bioactive fraction of Rhodiola algida against chronic hypoxia-induced pulmonary arterial hypertension and its anti-proliferation mechanism in rats. J Ethnopharmacol 216:175–183

    Article  CAS  PubMed  Google Scholar 

  60. Li G, Gai X, Li Z, Chang R, Qi Y, Zhaxi D et al (2016) Preliminary study of active component and mechanism of Rhodiola algida var. tangutica on inducing rat pulmonary artery vasorelaxation. J Qin Med Coll 01:40–45

    Google Scholar 

  61. Li H, Sze S, Tong Y, Ng T (2009) Production of Th1-and Th2-dependentcytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. J Ethnopharmacol 123(2):257–266

    Article  CAS  PubMed  Google Scholar 

  62. Rakotomalala G, Agard C, Tonnerre P, Tesse A, Derbré S, Michalet S et al (2013) Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. J Ethnopharmacol 148(1):106–116

    Article  CAS  PubMed  Google Scholar 

  63. Rosado-Vallado M, Brito-Loeza W, Mena-Rejon G, Quintero-Marmol E, Flores-Guido J (2000) Antimicrobial activity of Fabaceae species used in Yucatan traditional medicine. Fitoterapia 71(5):570–573

    Article  CAS  PubMed  Google Scholar 

  64. Ahmadi A, Khalili M, Margedari SH, Nahri Niknafs B (2016) The effects of solvent polarity on hypoglycemic and hypolipidemic activities of Securigera securidaca (L.) seeds. Drug Res 66(03):130–135

    CAS  Google Scholar 

  65. Hosseinzadeh H, Ramezani M, Danaei A (2002) Antihyperglycaemic effect and acute toxicity of Securigera securidaca L. seed extracts in mice. Phytother Res 16(8):745–747

    Article  CAS  PubMed  Google Scholar 

  66. Ahmadipour B (2018) Securigera securidaca seed medicinal herb supplementation of diets improves pulmonary hypertensive response in broiler chickens reared at high altitude. J Anim Physiol Anim Nutr 102(6):1601–1607

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jindal, D.K., Sah, P., Bisht, D., Lalhlenmawia, H., Kumar, D., Kumar, D. (2021). Role of Medicinal Plants in Pulmonary Hypertension. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_13

Download citation

Publish with us

Policies and ethics