Skip to main content

Immuno-Pathogenesis of Respiratory Diseases

  • Chapter
  • First Online:
Medicinal Plants for Lung Diseases

Abstract

Immuno-pathogenesis, by definition (Nature) is the process of disease development involving an immune response or components thereof. Our immune system comprises innate and adaptive systems. The innate immune system produces receptors that are hard-wired in our genome which encounters all types of pathogens. Innate immunity recognizes pathogen-related patterns known as pattern associated molecular patterns that enables it to distinguish pathogens from commensal organisms, acting as the first line of defense against pathogens. On the other hand, the adaptive immune system has specific receptors that are produced only when specific pathogens are encountered by the human body. Lymphocytes are an important component of the adaptive immunity as it can evolve and differentiate to recognize specific pathogens, protecting the body against subsequent infections. Although they are seen as separate, but both innate and adaptive immune systems work together, in which the former paves way for the latter for effectively providing long lasting immunity. Moreover, since there is a delay in the adaptive immune response (4 to 7 days), the innate immune response has a critical role in taking the lead to protect the body and/or controlling the spread of infection within the body. In this chapter, we will be describing the current findings of immuno-pathogenesis on various respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forum of International Respiratory Societies (2017) The global impact of respiratory disease, 2nd edn. European Respiratory Society, Sheffield

    Google Scholar 

  2. WHO (2020a) Influenza (Seasonal). https://www.who.int/news-room/fact sheets/detail/influenza-(seasonal)

  3. Yang L, Liu S, Liu J, Zhang Z et al (2020) COVID-19: immunopathogenesis and Immunotherapeutics. Nat Signal Transduct Target Ther 5:128

    Article  CAS  Google Scholar 

  4. Zhang J, Liu J, Yuan Y et al (2020) Two waves of pro-inflammatory factors are released during the influenza A virus (IAV)-driven pulmonary immunopathogenesis. PLoS Pathog 16(2):e1008334. https://doi.org/10.1371/journal.ppat.1008334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martínez-Alemán S, Bustamante AE, Jimenez-Valdes RJ, González GM, Sánchez-González A (2020) Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity. Int J Med Microbiol 310(7):151451. https://doi.org/10.1016/j.ijmm.2020.151451

    Article  CAS  PubMed  Google Scholar 

  6. Atanasova KR, Reznikov LR (2018) Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 19(1):149. https://doi.org/10.1186/s12931-018-0846-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Theprungsirikul J, Skopelja-Gardner S, Meagher RE, Clancy JP, Zemanick ET, Ashare A, Rigby WFC (2020) Dissociation of systemic and mucosal autoimmunity in cystic fibrosis. J Cyst Fibros 19(2):196–202. https://doi.org/10.1016/j.jcf.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Malhotra S, Hayes D Jr, Wozniak DJ (2019) Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J Cyst Fibros 18(6):796–803. https://doi.org/10.1016/j.jcf.2019.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neill DR, Saint GL, Bricio-Moreno L et al (2014) The B lymphocyte differentiation factor (BAFF) is expressed in the airways of children with CF and in lungs of mice infected with Pseudomonas aeruginosa. PLoS One 9(5):e95892. https://doi.org/10.1371/journal.pone.0095892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mauch RM, Jensen PØ, Moser C, Levy CE, Høiby N (2018) Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis. J Cyst Fibros 17(2):143–152. https://doi.org/10.1016/j.jcf.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  11. Lammertyn EJ, Vandermeulen E, Bellon H et al (2017) End-stage cystic fibrosis lung disease is characterised by a diverse inflammatory pattern: an immunohistochemical analysis. Respir Res 18:10. https://doi.org/10.1186/s12931-016-0489-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geitani R, Moubareck CA, Xu Z, Karam Sarkis D, Touqui L (2020) Expression and roles of antimicrobial peptides in innate defense of airway Mucosa: potential implication in cystic fibrosis. Front Immunol 11:1198. https://doi.org/10.3389/fimmu.2020.01198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tripathi S, White MR, Hartshorn KL (2015) The amazing innate immune response to influenza A virus infection. Innate Immun 21(1):73–98. https://doi.org/10.1177/1753425913508992

    Article  CAS  PubMed  Google Scholar 

  14. Tuerxun W, Wang Y, Cui C, Yang L et al (2020) Expression pattern of the interferon regulatory factor family members in influenza virus induced local and systemic inflammatory responses. Clin Immunol. 217:108469. https://doi.org/10.1016/j.clim.2020.108469

    Article  CAS  PubMed  Google Scholar 

  15. Ling GS, Crawford G, Buang N, Bartok I, Tian K, Thielens NM, et al. (2018) C1q restrains autoimmunity and viral infection by regulating CD8(+) T cell metabolism. Science 360:558–63. https://doi.org/10.1126/science.aao4555 PMID: 29724957

    Google Scholar 

  16. Duan S, Thomas PG (2016) Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol 7:25. https://doi.org/10.3389/fimmu.2016.00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiu C, Openshaw PJ, 2015, Antiviral B cell and T cell immunity in the lungs, NATURE IMMUNOLOGY, Vol: 16, Pages: 18-26, ISSN: 1529-2908

    Google Scholar 

  18. Wang Z, Loh L, Kedzierski L, Kedzierska K (2016) Avian influenza viruses, inflammation, and CD8(+) T cell immunity. Front Immunol 7:60. https://doi.org/10.3389/fimmu.2016.00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. WHO (2020b) Tuberculosis - key facts. https://www.who.int/news-room/fact-sheets/detail/tuberculosis

  20. Harvey RA, Champe PC, Fisher BD (2007) Lippincott’s illustrated reviews: microbiology. Wolters Kluwer, Lippincott Williams & Wilkins, p 186

    Google Scholar 

  21. Liu Y, Wang R, Jiang J, Cao Z, Zhai F, Sun W, Cheng X (2018) A subset of CD1c+ dendritic cells is increased in patients with tuberculosis and promotes Th17 cell polarization. Tuberculosis (Edinb) 113:189–199. https://doi.org/10.1016/j.tube.2018.10.007

    Article  CAS  Google Scholar 

  22. Lavalett L, Rodriguez H, Ortega H, Sadee W, Schlesinger LS, Barrera LF (2017) Alveolar macrophages from tuberculosis patients display an altered inflammatory gene expression profile. Tuberculosis (Edinb) 107:156–167. https://doi.org/10.1016/j.tube.2017.08.012

    Article  CAS  Google Scholar 

  23. Arbués A, Brees D, Chibout SD, Fox T, Kammüller M, Portevin D (2020) TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog 16(2):e1008312. https://doi.org/10.1371/journal.ppat.1008312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu W, Zhou J, Niu F, Pu F, Wang Z, Huang M, et al (2020) Mycobacterium tuberculosis infection increases the number of osteoclasts and inhibits osteoclast apoptosis by regulating TNF‑α‑mediated osteoclast autophagy. Exp Ther Med 20:1889–1898. https://doi.org/10.3892/etm.2020.8903

  25. Churina EG, Urazova OI, Novitskiy VV (2012) The role of foxp3-expressing regulatory T cells and T helpers in immunopathogenesis of multidrug resistant pulmonary tuberculosis. Tuberc Res Treat. 2012:931291. https://doi.org/10.1155/2012/931291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ristimaki A, Garfinkel S, Wessendorf J, Maciag T, Hla T. Induction of cyclooxygenase by Interleukin 1 alpha. J Biol Chem 1994; 269:1769–75

    Google Scholar 

  27. Hempel SL, Monick MM, Hunninghake GW (1994) Lipopolysacharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes. J Clin Invest 1994; 93:391–396

    Google Scholar 

  28. Rangel Moreno J, Estrada García I, De La Luz García Hernández M, Aguilar Leon D, Marquez R, Hernández Pando R (2002) The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 106(2):257–66. https://doi.org/10.1046/j.1365-2567.2002.01403.x. PMID: 12047755; PMCID: PMC1782721

  29. Rangel Moreno J, Estrada García I, De La Luz García Hernández M, Aguilar Leon D, Marquez R, Hernández Pando R (2002) The role of prostaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 106(2):257–266. https://doi.org/10.1046/j.1365-2567.2002.01403.x

    Article  PubMed  Google Scholar 

  30. Mishra A, Akhtar S, Jagannath C, Khan A (2017) Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: emerging concepts and perspectives. Mol Immunol 87:240–248. https://doi.org/10.1016/j.molimm.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  31. Shaw MH, Kamada N, Warner N, Kim Y-G, Nuñez G (2011) The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol 32:73–79. https://doi.org/10.1016/j.it.2010.12.007

  32. Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175. https://doi.org/10.1182/blood-2006-05-024406

  33. Troegeler A, Mercier I, Cougoule C, Pietretti D, Colom A, Duval C, Vu Manh T-P, Capilla F, Poincloux R, Pingris K, Nigou J, Rademann J, Dalod M, Verreck FAW, Al Saati T, Lugo-Villarino G, Lepenies B, Hudrisier D, Neyrolles O (2017) C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci 114:E540–E549. https://doi.org/10.1073/pnas.1613254114

  34. Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med 202:987–999, https://doi.org/10.1084/jem.20051239

  35. Quirt J, Hildebrand KJ, Mazza J et al (2018) Allergy Asthma Clin Immunol 14(Suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dharmage SC et al (2019) Epidemiology of asthma in children and adults. Front Pediatrics 7:246. https://doi.org/10.3389/fped.2019.00246

    Article  Google Scholar 

  37. Bochner BS, Undem BJ, Lichtenstein LM (1994) Immunological aspects of allergic asthma. Annu Rev Immunol 12:295–335

    Article  CAS  Google Scholar 

  38. Ishmael FT (2011) The Inflammatory Response in the Pathogenesis of Asthma. J Am Osteopath Assoc 111(11_suppl_7):S11–S17

    PubMed  Google Scholar 

  39. Kay AB (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11:148–152

    Article  CAS  Google Scholar 

  40. Kim YM, Kim YS, Jeon SG, Kim YK (2013) Immunopathogenesis of allergic asthma: more than the th2 hypothesis. Allergy Asthma Immunol Res 5(4):189–196. https://doi.org/10.4168/aair.2013.5.4.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Durrant DM, Metzger DW (2010) Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Invest 39(4-5):526–549. https://doi.org/10.3109/08820131003615498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379(9823):1341–1351. https://doi.org/10.1016/S2213-2600(12)70060-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Global Initiative for Chronic Obstructive Lung Disease (GOLD) Report (2020) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. http://www.goldcopd.com/. Accessed 9 Nov 2020

  44. Agustí A, Hogg JC (2019) Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med 381(13):1248–1256. https://doi.org/10.1056/NEJMra1900475

    Article  PubMed  Google Scholar 

  45. Joshua JS, Thomas P (2014) COPD: immunopathogenesis and immunological markers. Adv Res 3(2):221–235. https://doi.org/10.9734/AIR/2015/12320

    Article  Google Scholar 

  46. Witko-Sarsat V, Rieu P, Descamps-Latscha B et al (2000) Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Invest 80(5):617–653

    Article  CAS  Google Scholar 

  47. Shapiro SD, Ingenito EP (2005) The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. Am J Respirat Cell Mol Biol 32(5):367–372

    Article  CAS  Google Scholar 

  48. Sgalla G, Iovene B, Calvello M et al (2018) Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 19:32. https://doi.org/10.1186/s12931-018-0730-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824456/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McLean-Tooke A, Moore I, Lake F (2019) Idiopathic and immune-related pulmonary fibrosis: diagnostic and therapeutic challenges. Clin Trans Immunol:e1086. https://doi.org/10.1002/cti2.1086

  50. Desai O, Winkler J, Minasyan M, Herzog EL (2018) The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med 5:43. https://doi.org/10.3389/fmed.2018.00043

    Article  Google Scholar 

  51. Kolahian S, Fernandez IE, Eickelberg O, Hartl D (2016) Immune mechanisms in pulmonary fibrosis. Am J Respirat Cell Mol Biol. https://doi.org/10.1165/rcmb.2016-0121TR

  52. Huber LC, Bye H, Brock M (2015) The pathogenesis of pulmonary hypertension – an update. Swiss Medical Weekly 145:w14202. https://doi.org/10.4414/smw.2015.14202

    Article  PubMed  Google Scholar 

  53. Simonneau G, Montani D, Celermajer DS et al (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir 53

    Google Scholar 

  54. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115(1):165–175. https://doi.org/10.1161/CIRCRESAHA.113.301141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097142/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferlay J, Colombet M, Soerjomataram I et al (2018) Global and regional estimates of the incidence and mortality for 38 cancers: GLOBOCAN. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  56. National Research Council (US) Panel on Dosimetric Assumptions Affecting the Application of Radon Risk Estimates (1991) Comparative dosimetry of radon in mines and homes. In: Cells of origin for lung cancer. National Academies Press, Washington, DC. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234231/

  57. Zheng M (2016) Classification and pathology of lung cancer. Surg Oncol Clin N Am 25(3):447–468. https://doi.org/10.1016/j.soc.2016.02.003

    Article  PubMed  Google Scholar 

  58. Sun S, Schiller J, Gazdar A (2007) Lung cancer in never smokers - a different disease. Nat Rev Cancer 7:778–790. https://doi.org/10.1038/nrc2190

    Article  CAS  PubMed  Google Scholar 

  59. Marshall AL, Christiani DC (2013) Genetic susceptibility to lung cancer--light at the end of the tunnel? Carcinogenesis 34(3):487–502. https://doi.org/10.1093/carcin/bgt016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Google Scholar 

  61. Brambilla E, Gazdar A (2009) Pathogenesis of lung cancer signaling pathways: roadmap for therapies. Eur Respir J 33(6):1485–1497. https://doi.org/10.1183/09031936.00014009

  62. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, et al (2008) DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett 266: 60–72

    Google Scholar 

  63. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Google Scholar 

  64. Brambilla E, Gazzeri S, Lantuejoul S, et al (1998) p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res 4:1609–1618

    Google Scholar 

  65. Aldarouish M, Wang C (2016) Trends and advances in tumor immunology and lung cancer immunotherapy. J Exp Clin Cancer Res 35(1):157. https://doi.org/10.1186/s13046-016-0439-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Madhavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhavan, P., Rizwan, F., Shaik, I. (2021). Immuno-Pathogenesis of Respiratory Diseases. In: Dua, K., Nammi, S., Chang, D., Chellappan, D.K., Gupta, G., Collet, T. (eds) Medicinal Plants for Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6850-7_1

Download citation

Publish with us

Policies and ethics