Solar Chimney and Turbine-Assisted Ventilation System



All over the world, the demand for electricity in the household sector is increasing significantly. At the same time, the traditional sources from where the electricity generated are decreasing perceptively.


  1. AboulNaga, M. M., & Abdrabboh, S. N. (2000). Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney. Renewable Energy, 19(1–2), 47–54.CrossRefGoogle Scholar
  2. Afonso, C., & Oliveira, A. (2000). Solar chimneys: Simulation and experiment. Energy and Buildings, 32(1), 71–79.CrossRefGoogle Scholar
  3. Al-Obaidi, K. M., Ismail, M., & Rahman, A. M. A. (2014). A review of the potential of attic ventilation by passive and active turbine ventilators in tropical Malaysia. Sustainable Cities and Society, 10, 232–240.CrossRefGoogle Scholar
  4. Al-Kayiem, H. H., Sreejaya, K. V., & Gilani, S. I. U. H. (2014). Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney. Energy and Buildings, 68, 305–311.CrossRefGoogle Scholar
  5. Amer, E. H. (2006). Passive options for solar cooling of buildings in arid areas. Energy, 31, 1332–1344.Google Scholar
  6. Amara, F., Agbossou, K., Cardenas, A., Dubé, Y., & Kelouwani, S. (2015). Comparison and simulation of building thermal models for effective energy management. Smart Grid and Renewable Energy, 6(04), 95.CrossRefGoogle Scholar
  7. Amori, K. E., & Mohammed, S. W. (2012). Experimental and numerical studies of solar chimney for natural ventilation in Iraq. Energy and Buildings, 47, 450–457.CrossRefGoogle Scholar
  8. Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928–2934.CrossRefGoogle Scholar
  9. Ariffin, A. R., Rao, A., & Nila, S. P. (2002). Thermal comfort and evaporative cooling of external walls in an equatorial climate. In A. M. A. Rahman (Ed.), Development of passive solar design and technology in tropical climates (pp. 23–34). Pulau Pinang: The Universiti Sains Malaysia Co-operative Bookshop Ltd.Google Scholar
  10. Aynsley, R. (2014). Natural ventilation in passive design. Environment Design Guide, 80, 1.Google Scholar
  11. Bansal, N. K., Mathur, J., Mathur, S., & Jain, M. (2005). Modeling of window-sized solar chimneys for ventilation. Building and Environment, 40(10), 1302–1308.Google Scholar
  12. Bassiouny, R., & Korah, N. S. (2009). Effect of solar chimney inclination angle on space flow pattern and ventilation rate. Energy and Buildings, 41(2), 190–196.CrossRefGoogle Scholar
  13. Breesch, H., Bossaer, A., & Janssens, A. (2005). Passive cooling in a low-energy office building. Solar Energy, 79(6), 682–696.CrossRefGoogle Scholar
  14. Bouchair, A., & Fitzgerald, D. (1988). The optimum azimuth for a solar chimney in hot climates. Energy and Buildings, 12(2), 135–140.CrossRefGoogle Scholar
  15. Bouchair, A. (1994). Solar chimney for promoting cooling ventilation in southern Algeria. Building Services Engineering Research and Technology, 15(2), 81–93.CrossRefGoogle Scholar
  16. Collinge, W. O., Rickenbacker, H. J., Landis, A. E., Thiel, C. L., & Bilec, M. M. (2018). Dynamic life cycle assessments of a conventional green building and a net zero energy building: Exploration of static, dynamic, attributional, and consequential electricity grid models. Environmental Science and Technology, 52(19), 11429–11438.CrossRefGoogle Scholar
  17. Chen, K., Wang, J., Dai, Y., & Liu, Y. (2014). Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney. Energy Conversion and Management, 80, 78–86.CrossRefGoogle Scholar
  18. Chan, H. Y., Riffat, S. B., & Zhu, J. (2010). Review of passive solar heating and cooling technologies. Renewable and Sustainable Energy Reviews, 14(2), 781–789.CrossRefGoogle Scholar
  19. Chantawong, P., Hirunlabh, J., Zeghmati, B., Khedari, J., Teekasap, S., & Win, M. M. (2006). Investigation on thermal performance of glazed solar chimney walls. Solar Energy, 80(3), 288–297.CrossRefGoogle Scholar
  20. Chik, N. A., Rahim, K. A., Saari, M. Y., & Alias, E. F. (2012). Changes in consumer energy intensity in Malaysia. International Journal of Economics and Management, 6(2), 221–240.Google Scholar
  21. Chungloo, S., & Limmeechokchai, B. (2007). Application of passive cooling systems in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand. Building and Environment, 42(9), 3341–3351.CrossRefGoogle Scholar
  22. Chu, C. C. M., Chu, R. K. H., & Rahman, M. M. (2012). Experimental study of cold inflow and its effect on draft of a chimney. Advanced Computational Methods and Experiments in Heat Transfer XII, WIT Transactions on Engineering Sciences, 75, 73–82.Google Scholar
  23. Danny, P. (2005). Literature review of the impact and need for attic ventilation in Florida homes. Revised Draft Report, May 31 2005, Submitted to Florida Department of Community Affairs, FSEC-CR-1496-05.Google Scholar
  24. DeBlois, J. C., Bilec, M. M., & Schaefer, L. A. (2013). Design and zonal building energy modeling of a roof integrated solar chimney. Renewable Energy, 52, 241–250.CrossRefGoogle Scholar
  25. Dai, Y. J., Huang, H. B., & Wang, R. Z. (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295–1304.CrossRefGoogle Scholar
  26. Eichholtz, P., Kok, N., & Quigley, J. M. (2013). The economics of green building. Review of Economics and Statistics, 95(1), 50–63.CrossRefGoogle Scholar
  27. Ekechukwu, O. V., & Norton, B. (1997). Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers. Energy Conversion and Management, 38(14), 1483–1500.CrossRefGoogle Scholar
  28. Fudholi, A., Zohri, M., Jin, G. L., Ibrahim, A., Yen, C. H., Othman, M. Y., et al. (2018). Energy and exergy analyses of photovoltaic thermal collector with ∇-groove. Solar Energy, 159, 742–750.CrossRefGoogle Scholar
  29. Guramun, S., Misaran, M. S., Ibrahim, M. K. W., & Rahman, M. M. (2019). Trends of hybrid earth-air-pipe (EAP) photovoltaic cooling system for efficiency improvement: A review. Journal of Mechanical Engineering Research and Development, 42(4), 191–195.CrossRefGoogle Scholar
  30. Gieseler, U. D. J., Bier, W., & Heidt, F. D. (2002). Cost efficiency of ventilation systems for low-energy buildings with earth-to-air heat exchange and heat recovery. In Proceedings of the International Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002).Google Scholar
  31. Gan, G. (1998). A parametric study of Trombe walls for passive cooling of buildings. Energy and Buildings, 27(1), 37–44.CrossRefGoogle Scholar
  32. Gunerhan, H., & Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment, 42(2), 779–783.CrossRefGoogle Scholar
  33. Hall, R., Wang, X., Ogden, R., & Elghali, L. (2011). Transpired solar collectors for ventilation air heating. Proceedings of the Institution of Civil Engineers-Energy, 164(3), 101–110.CrossRefGoogle Scholar
  34. Hirunlabh, J., Wachirapuwadon, S., Pratinthong, N., & Khedari, J. (2001a). New configurations of a roof solar collector maximizing natural ventilation. Building and Environment, 36(3), 383–391.CrossRefGoogle Scholar
  35. Harris, D. J., & Helwig, N. (2007). Solar chimney and building ventilation. Applied Energy, 84(2), 135–146.CrossRefGoogle Scholar
  36. Hughes, B. R., Calautit, J. K., & Ghani, S. A. (2012). The development of commercial wind towers for natural ventilation: A review. Applied Energy, 92, 606–627.CrossRefGoogle Scholar
  37. Haghighi, A. P., & Maerefat, M. (2014). Solar ventilation and heating of buildings in sunny winter days using solar chimney. Sustainable Cities and Society, 10, 72–79.CrossRefGoogle Scholar
  38. Hu, Z., He, W., Ji, J., & Zhang, S. (2017). A review on the application of Trombe wall system in buildings. Renewable and Sustainable Energy Reviews, 70, 976–987.CrossRefGoogle Scholar
  39. Hirunlabh, J., Wachirapuwadon, S., Pratinthong, N., & Khedari, J. (2001b). New configurations of a roof solar collector maximizing natural ventilation. Building and Environment, 36(3), 383–391.CrossRefGoogle Scholar
  40. Ismail, M. A., & Rashid, F. A. (2014). Malaysia’s existing green homes compliance with LEED for homes. Procedia Environmental Sciences, 20, 131–140.CrossRefGoogle Scholar
  41. Jianliu, X., & Weihua, L. (2013). Study on solar chimney used for room natural ventilation in Nanjing. Energy and Buildings, 66, 467–469.CrossRefGoogle Scholar
  42. Kamal, M. A. (2012). An overview of passive cooling techniques in buildings: Design concepts and architectural interventions. Acta Technica Napocensis: Civil Engineering & Architecture, 55(1), 2012.Google Scholar
  43. Kaneko, Y., Sagara, K., Yamanaka, T., Kotani, H., & Sharma, S. D. (2006, May). Ventilation performance of solar chimney with built-in latent heat storage. In Proceedings of 10th International Conference of Thermal Energy Conference (ECOSTOCK).Google Scholar
  44. Kazanci, O. B., Skrupskelis, M., Olesen, B. W., & Pavlov, G. K. (2013). Solar sustainable heating, cooling and ventilation of a net zero energy house. Paper presented at Clima 2013, Prague, Czech Republic.Google Scholar
  45. Khanal, R., & Lei, C. (2011). Solar chimney—A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811–1819.CrossRefGoogle Scholar
  46. Khanal, R., & Lei, C. (2014). An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Solar Energy, 107, 461–474.CrossRefGoogle Scholar
  47. Khedari, J., Boonsri, B., & Hirunlabh, J. (2000). Ventilation impact of a solar chimney on indoor temperature fluctuation and air change in a school building. Energy and Buildings, 32(1), 89–93.CrossRefGoogle Scholar
  48. Khedari, J., Hirunlabh, J., & Bunnag, T. (1997). Experimental study of a roof solar collector towards the natural ventilation of new houses. Energy and Buildings, 26(2), 159–164.CrossRefGoogle Scholar
  49. Khedari, J., Rachapradit, N., & Hirunlabh, J. (2003). Field study of performance of solar chimney with air-conditioned building. Energy, 28(11), 1099–1114.CrossRefGoogle Scholar
  50. Kleiven, T. (2003). Natural ventilation in buildings: Architectural concepts, consequences and possibilities. Institutt for byggekunst, historie og teknologi.Google Scholar
  51. Lal, S., Kaushik, S. C., & Bhargav, P. K. (2013). Solar chimney: A sustainable approach for ventilation and building space conditioning. International Journal of Development and Sustainability, 2(1), 277–297.Google Scholar
  52. Li, Y., & Liu, S. (2014). Experimental study on thermal performance of a solar chimney combined with PCM. Applied Energy, 114, 172–178.CrossRefGoogle Scholar
  53. Li, H., Yu, Y., Niu, F., Shafik, M., & Chen, B. (2014). Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney. Renewable Energy, 62, 468–477.CrossRefGoogle Scholar
  54. Lien, J., & Ahmed, N. (2011). Wind driven ventilation for enhanced indoor air quality. In Chemistry, emission control, radioactive pollution and indoor air quality. InTechGoogle Scholar
  55. Liping, W., & Hien, W. N. (2007). Applying natural ventilation for thermal comfort in residential buildings in Singapore. Architectural Science Review, 50(3), 224–233.Google Scholar
  56. Lomas, K. J. (2007). Architectural design of an advanced naturally ventilated building form. Energy and Buildings, 39(2), 166–181.CrossRefGoogle Scholar
  57. Liu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., et al. (2017). A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society, 32, 375–396.CrossRefGoogle Scholar
  58. Mathur, J., Bansal, N. K., Mathur, S., & Jain, M. (2006). Experimental investigations on solar chimney for room ventilation. Solar Energy, 80(8), 927–935.CrossRefGoogle Scholar
  59. Micallef, D., Buhagiar, V., & Borg, S. P. (2016). Cross-ventilation of a room in a courtyard building. Energy and Buildings, 133, 658–669.CrossRefGoogle Scholar
  60. Macias, M., Gaona, J. A., Luxan, J. M., & Gomez, G. (2009). Low cost passive cooling system for social housing in dry hot climate. Energy and Buildings, 41(9), 915–921.CrossRefGoogle Scholar
  61. Maerefat, M., & Haghighi, A. P. (2010). Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney. Renewable Energy, 35(10), 2316–2324.CrossRefGoogle Scholar
  62. Nouanégué, H. F., & Bilgen, E. (2009). Heat transfer by convection, conduction and radiation in solar chimney systems for ventilation of dwellings. International Journal of Heat and Fluid Flow, 30(1), 150–157.CrossRefGoogle Scholar
  63. Oh, T. H., Lalchand, G., & Chua, S. C. (2014). Juggling act of electricity demand and supply in Peninsular Malaysia: Energy efficiency, renewable energy or nuclear? Renewable and Sustainable Energy Reviews, 37, 809–821.CrossRefGoogle Scholar
  64. Ong, K. S. (2003). A mathematical model of a solar chimney. Renewable Energy, 28(7), 1047–1060.CrossRefGoogle Scholar
  65. Pacheco, R., Ordóñez, J., & Martínez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16(6), 3559–3573.CrossRefGoogle Scholar
  66. Rahman, M. M., Chu, C. M., Kumaresen, S., Yan, F. Y., Kim, P. H., Mashud, M., et al. (2014). Evaluation of the modified chimney performance to replace mechanical ventilation system for livestock housing. Procedia Engineering, 90, 245–248.CrossRefGoogle Scholar
  67. Rahman, M. M., Misaran, M. S. B., Jamanun, M. J. B., & Jawad, A. (2018). Estimate the ventilation effect from wire mesh screen assisted solar chimney. Journal of Energy and Power Engineering, 12, 127–131.Google Scholar
  68. Rabani, M., Kalantar, V., Dehghan, A. A., & Faghih, A. K. (2015). Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system. Energy and Buildings, 102, 45–57.CrossRefGoogle Scholar
  69. Revel, A., & Huynh, P. (2004) Characterising roof ventilators. In Australasian Fluid Mechanics Conference, The University of Sydney.Google Scholar
  70. Robert, S. (2005). Energy alternatives. Heinemann Educational Publishers.Google Scholar
  71. Sharma, S. D., Kotani, H., Kaneko, Y., Yamanaka, T., & Sagara, K. (2007). Design, development of a solar chimney with built-in latent heat storage material for natural ventilation. International Journal of Green Energy, 4(3), 313–324.CrossRefGoogle Scholar
  72. Saadatian, O., Sopian, K., Lim, C. H., Asim, N., & Sulaiman, M. Y. (2012). Trombe walls: A review of opportunities and challenges in research and development. Renewable and Sustainable Energy Reviews, 16(8), 6340–6351.CrossRefGoogle Scholar
  73. Sundell, J. (2004). On the history of indoor air quality and health. Indoor Air, 14(Suppl. 7), 51–58.Google Scholar
  74. Tamm, G., & Jaluria, Y. (2017). Flow of hot gases in vertical shafts with natural and forced ventilation. International Journal of Heat and Mass Transfer, 114, 337–353.CrossRefGoogle Scholar
  75. Santamouris, M., & Asimakopoulos, D. (Eds.). (1996). Passive cooling of buildings. Earthscan.Google Scholar
  76. Taleb, H. M. (2014). Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in UAE buildings. Frontiers of Architectural Research, 3(2), 154–165.CrossRefGoogle Scholar
  77. Tan, A. Y. K., & Wong, N. H. (2013). Parameterization studies of solar chimneys in the tropics. Energies, 6(1), 145–163.CrossRefGoogle Scholar
  78. Tan, A. Y. K., & Wong, N. H. (2012). Natural ventilation performance of classroom with solar chimney system. Energy and Buildings, 53, 19–27.CrossRefGoogle Scholar
  79. Waewsak, J., Hirunlabh, J., Khedari, J., & Shin, U. C. (2003). Performance evaluation of the BSRC multi-purpose bio-climatic roof. Building and Environment, 38(11), 1297–1302.CrossRefGoogle Scholar
  80. Xiong, X., Fulpagare, Y., Sun, C., & Lee, P. S. (2019, May). Numerical study of a new rack layout for better cold air distribution and reduced fan power. In 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 399–404). IEEE.Google Scholar
  81. Yusoff, W. F. M., Salleh, E., Adam, N. M., Sapian, A. R., & Sulaiman, M. Y. (2010). Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack. Building and Environment, 45(10), 2296–2308.CrossRefGoogle Scholar
  82. Zaki, W. R. M., Nawawi, A. H., & Ahmad, S. S. (2010). Economic assessment of Operational Energy reduction options in a house using Marginal Benefit and Marginal Cost: A case in Bangi, Malaysia. Energy Conversion and Management, 51(3), 538–545.CrossRefGoogle Scholar
  83. Zhai, Z. J., Johnson, M. H., & Krarti, M. (2011a). Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy and Buildings, 43(9), 2251–2261.CrossRefGoogle Scholar
  84. Zhai, X. Q., Song, Z. P., & Wang, R. Z. (2011b). A review for the applications of solar chimneys in buildings. Renewable and Sustainable Energy Reviews, 15(8), 3757–3767.CrossRefGoogle Scholar
  85. Zhou, X., Yang, J., Ochieng, R. M., Li, X., & Xiao, B. (2009). Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow. Atmospheric Research, 91(1), 26–35.CrossRefGoogle Scholar
  86. Zhu, N., Li, S., Hu, P., Lei, F., & Deng, R. (2019). Numerical investigations on performance of phase change material Trombe wall in building. Energy, 187, 116057.CrossRefGoogle Scholar
  87. Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91–101.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.Department of Mechatronics EngineeringWorld University of BangladeshDhakaBangladesh

Personalised recommendations