Advertisement

Effects of Physical Geometry on Solar Chimney Performance

Chapter
  • 80 Downloads

Abstract

The global power demand increases due to the growth of population, change of lifestyle for modernization, and development of technology. All these factors highly depend on electricity which is known as one of the pure energy received from natural resources.

References

  1. Ahmed, O. K., & Hussein, A. S. (2018). New design of solar chimney (case study). Case Studies in Thermal Engineering, 11, 105–112.CrossRefGoogle Scholar
  2. Ahmed, M. R., & Patel, S. K. (2017). Computational and experimental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Conversion and Management, 149, 61–78.CrossRefGoogle Scholar
  3. Ali, B. (2017). Techno-economic optimization for the design of solar chimney power plants. Energy Conversion and Management, 138, 461–473. https://doi.org/10.1016/j.enconman.2017.02.023.
  4. Al-Azawiey, S. S., & Hassan, S. B. (2016). Heat absorption properties of ground material for solar chimney power plants. International Journal of Energy Production and Management, 1(4), 403–418.CrossRefGoogle Scholar
  5. Al-Azawiey, S. S., Al-Kayiem, H. H., Hassan, S. B. (2016). Investigation on the influnce of collector height on the performance of solar chimney power plant. ARPN Journal of Engineering and Applied Sciences, 11, 12197–12201.Google Scholar
  6. Al-Azawiey, S. S., Al-Kayiem, H. H., & Hassan, S. B. (2017). On the influence of collector size on the solar chimneys performance. MATEC Web of Conferences 131.  https://doi.org/10.1051/matecconf/201713102011.
  7. Al-Kayiem, H., Mohammad, S. (2019). Potential of renewable energy resources with an emphasis on solar power in Iraq: An outlook. Resources, 8, 42. https://doi.org/10.3390/resources8010042.
  8. Bansod, P, J., Thakre, S. B., Wankhade, N. A. (2016). Study of influence of size parameters on power output in chimney operated solar power plant. 13, 64–68. https://doi.org/10.9790/1684-1302036468.
  9. Beneke, L. W., Fourie, C. J. S., & Huan, Z. (2016). Investigation of an octagon-shaped chimney solar power plant. Journal of Energy in Southern Africa, 27(4), 38–52.CrossRefGoogle Scholar
  10. Bernardes, M. A. dos S. (2013). On the heat storage in solar updraft tower collectors - Influence of soil thermal properties. Solar Energy, 98, 49–57. https://doi.org/10.1016/j.solener.2013.07.014.
  11. Bernardes, S., Zhou, X., Aure, M. (2013). On the heat storage in solar updraft tower collectors – Water bags. 91, 22–31. https://doi.org/10.1016/j.solener.2012.11.025.
  12. Bonnelle, D. (2004). Solar chimney, water spraying energy tower, and linked renewable energy conversion devices: Presentation, criticism and proposals.Google Scholar
  13. Bozkurt, Đ. (2010). Energy resources and their effects on environment vocational school of technical studies electrical programme 2 energy resources 3 fossil fuels 4 energy resources. WSEAS Transactions on Environment and Development, 6, 327–334.Google Scholar
  14. Brigitte, W. (2007). Green tower not all hot air. 02-20-2007.Google Scholar
  15. Burek, S. A. M., & Habeb, A. (2007). Air flow and thermal efficiency characteristics in solar chimneys and Trombe Walls. Energy and Buildings, 39(2), 128–135.CrossRefGoogle Scholar
  16. Cao, F., Mao, Y., Zhu, T., & Zhao, L. (2017). TRNSYS simulation of solar chimney power plants with a heat storage layer. Turkish Journal of Electrical Engineering & Computer Sciences, 25(4), 2719–2726.CrossRefGoogle Scholar
  17. Chen, F. F. (2011). An indispensable truth.Google Scholar
  18. Chen, S. (2014). Solar chimneys’ may help solve China’s energy woes. South China Morning Post.Google Scholar
  19. Chikere Aja, O., Al-Kayiem, H. H., & Ambri Abdul Karim, Z. (2013). Analytical investigation of collector optimum tilt angle at low latitude. Journal of Renewable and Sustainable Energy, 5(6), 063112.Google Scholar
  20. Choi, Y. J., Kam, D. H., Park, Y. W., & Jeong, Y. H. (2016). Development of analytical model for solar chimney power plant with and without water storage system. Energy, 112, 200–207.CrossRefGoogle Scholar
  21. Chungloo, S., Limmeechokchai, B. (2007). Application of passive cooling systems in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand. Building and Environment, 42, 3341–3351. https://doi.org/10.1016/j.buildenv.2006.08.030.
  22. Chu, C. C. M., Chu, R. K. H., & Rahman, M. M. (2012a). Experimental study of cold inflow and its effect on draft of a chimney. Advanced Computational Methods and Experiments in Heat Transfer XII, WIT Transactions on Engineering Sciences, 75, 73–82.Google Scholar
  23. Chu, C. M., Rahman, M. M., & Kumaresan, S. (2012b). Effect of cold inflow on chimney height of natural draft cooling towers. Nuclear Engineering and Design, 249, 125–131.CrossRefGoogle Scholar
  24. Dai, Y. J., Huang, H. B., & Wang, R. Z. (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295–1304.CrossRefGoogle Scholar
  25. El-Ghonemy, A. (2016). Solar chimney power plant with collector. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 2, 28–35.Google Scholar
  26. Ekechukwu, O. V., & Norton, B. (1997). Design and measured performance of a solar chimney for natural-circulation solar-energy dryers. Renewable Energy, 10(1), 81–90.CrossRefGoogle Scholar
  27. Erias, A., Grajetzki, C. (2016). World energy resources 2016. World Energy Council, 2016, 6–46. https://doi.org//www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf.
  28. Fasel, H. F., Meng, F., Shams, E., & Gross, A. (2013). CFD analysis for solar chimney power plants. Solar Energy, 98, 12–22.CrossRefGoogle Scholar
  29. Fathi, N., Aleyasin, S. S., & Vorobieff, P. (2016). Numerical-analytical assessment on Manzanares prototype. Applied Thermal Engineering, 102, 243–250.  https://doi.org/10.1016/j.applthermaleng.2016.03.133.CrossRefGoogle Scholar
  30. Fluri, T. P., & Von Backström, T. W. (2008). Performance analysis of the power conversion unit of a solar chimney power plant. Solar Energy, 82(11), 999–1008.CrossRefGoogle Scholar
  31. Ghalamchi, M., Ghalamchi, M., Ahanj, T. (2013). Numerical simulation for achieving optimum dimensions of a solar chimney power plant. 1, 26–31. https://doi.org/10.12691/rse-1-2-3.
  32. Ghorbani, B., Ghashami, M., Ashjaee, M. (2015). Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept. Energy Conversion and Management, 94, 1–11. https://doi.org/10.1016/j.enconman.2015.01.044.
  33. Grose, T. K. (2014). Solar chimneys can convert hot air to energy, but is funding a mirage? In (2014) Nationa lGeographic. Retrieved from http://news.nationalgeographic.com/news/energy/2014/04/140416-solar-updraft-towers-convert-hot-air-to-energy/.
  34. Guo, P., Li, J., Wang, Y., & Wang, Y. (2016). Evaluation of the optimal turbine pressure drop ratio for a solar chimney power plant. Energy Conversion and Management, 108, 14–22.  https://doi.org/10.1016/j.enconman.2015.10.076.CrossRefGoogle Scholar
  35. Haaf, W. (1984). Solar chimneys: part II: Preliminary test results from the Manzanares pilot plant. International Journal of Sustainable Energy, 2(2), 141–161.Google Scholar
  36. Haaf, W., Friedrich, K., Mayr, G., & Schlaich, J. (1983). Solar chimneys part I: Principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3–20.CrossRefGoogle Scholar
  37. Hanna, M. B., Mekhail, T. A. M., Dahab, O. M., Esmail, M. F. C., & Abdel-Rahman, A. R. (2016). Experimental and Numerical Investigation of the solar chimney power plant’s Turbine. Open Journal of Fluid Dynamics, 6(04), 332.CrossRefGoogle Scholar
  38. Hausfather, Z. (2014). Climate impacts of coal and natural gas. Berkerley Earth, 1–21.Google Scholar
  39. Hu, S., & Leung, D. Y. (2017). Mathematical modelling of the performance of a solar chimney power plant with divergent chimneys. Energy Procedia, 110, 440–445.CrossRefGoogle Scholar
  40. Hu, S., Leung, D. Y., & Chan, J. C. (2017). Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy, 120, 1–11.CrossRefGoogle Scholar
  41. Ilinca, A. (2016). Conventional and sloped solar chimney. 1–6.Google Scholar
  42. Jörg, O., & Scorer, R. S. (1967). An experimental study of cold inflow into chimneys. Atmospheric Environment, 1(6), 645–654.Google Scholar
  43. Kasaeian, A. B., Heidari, E., Vatan, S. N. (2011). Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant. Renewable and Sustainable Energy Reviews, 15, 5202–5206. https://doi.org/10.1016/j.rser.2011.04.019.
  44. Kasaeian, A., Mahmoudi, A. R., Astaraei, F. R., & Hejab, A. (2017). 3D simulation of solar chimney power plant considering turbine blades. Energy Conversion and Management, 147, 55–65.CrossRefGoogle Scholar
  45. Kayiem, H. H. A. NQAA (2006). Geometry alteration effect on the performance of a solar-wind power system. International Conference on Energy and Environment, 50–55.Google Scholar
  46. Kebabsa, H., Said, M., Lebbi, M., Daimallah, A. (2020). Thermo-hydrodynamic behavior of an innovative solar chimney. Renewable Energy, 145, 2074–2090. https://doi.org/10.1016/j.renene.2019.07.121.
  47. Kempener, R., Lavagne, O., Saygin, D., Skeer, J., Vinci, S., & Gielen, D. (2015). Off-grid renewable energy systems: status and methodological issues. The International Renewable Energy Agency (IRENA).Google Scholar
  48. Klimenta, D., Peuteman, J. (2014). A solar chimney power plant with a square-based pyramidal shape: Theoretical considerations. 13, 331–336..Google Scholar
  49. Kloppers, J. C., Kröger, D. G. (2004). Cost optimization of cooling tower geometry. Engineering Optimization, 36, 575–584. https://doi.org/10.1080/03052150410001696179.
  50. Koonsrisuk, A., & Chitsomboon, T. (2013). Mathematical modeling of solar chimney power plants. Energy, 51, 314–322.CrossRefGoogle Scholar
  51. Koonsrisuk, A., Lorente, S., & Bejan, A. (2010). Constructal solar chimney configuration. International Journal of Heat and Mass Transfer, 53(1–3), 327–333.CrossRefGoogle Scholar
  52. Lebbi, M., Boualit, H., Chergui, T., Boutina, L., Bouabdallah, A., & Oualli, H. (2015, March). Tower outlet/inlet radii ratio effects on the turbulent flow control in a solar chimney. In IREC2015 The Sixth International Renewable Energy Congress, pp. 1–6. IEEE.Google Scholar
  53. Lupi, F., Niemann, H. J., & Höffer, R. (2017). A novel spectral method for cross-wind vibrations: application to 27 full-scale chimneys. Journal of Wind Engineering and Industrial Aerodynamics, 171, 353–365.CrossRefGoogle Scholar
  54. Maia, C. B., Ferreira, A. G., Valle, R. M., & Cortez, M. F. (2009). Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Computers & Fluids, 38(3), 625–636.CrossRefGoogle Scholar
  55. McCully, P. (2001). Rivers no more: The environmental effects of large dams. Silenced Rivers: The Ecology and Politics of Large Dams.Google Scholar
  56. Mehla, N., Kumar, K., & Kumar, M. (2019). Thermal analysis of solar updraft tower by using different absorbers with convergent chimney. Environment, Development and Sustainability, 21(3), 1251–1269.CrossRefGoogle Scholar
  57. Milani Shirvan, K., Mirzakhanlari, S., Mamourian, M., Kalogirou, S. A. (2017). Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation. Applied Energy 195, 725–737. https://doi.org/10.1016/j.apenergy.2017.03.057.
  58. Ming, T., Gong, T., de Richter, R. K., Liu, W., & Koonsrisuk, A. (2016). Freshwater generation from a solar chimney power plant. Energy Conversion and Management, 113, 189–200.CrossRefGoogle Scholar
  59. Ming, T., Gong, T., de Richter, R. K., Cai, C., & Sherif, S. A. (2017). Numerical analysis of seawater desalination based on a solar chimney power plant. Applied Energy, 208(June), 1258–1273.  https://doi.org/10.1016/j.apenergy.2017.09.028.CrossRefGoogle Scholar
  60. Moore, F. K., Garde, M. A. (1983). Aerodynamic losses of highly flared natural draft cooling towers. In: Third Waste Heat Management and Utilization Conference, pp. 221–223.Google Scholar
  61. Nasraoui, H., Driss, Z., Kchaou, H. (2020). Novel collector design for enhancing the performance of solar chimney power plant. Renewable Energy, 145, 1658–1671. https://doi.org/10.1016/j.renene.2019.07.062.
  62. Ortega, E. P. (2011). Analyzes of Solar Chimney Design (Master’s Thesis). Department of Energy and Process Engineering, Norwegian University of Science and Technology, Oslo, Norway.Google Scholar
  63. Panse, S. V., Jadhav, A. S., Gudekar, A. S., & Joshi, J. B. (2011). Inclined solar chimney for power production. Energy Conversion and Management, 52(10), 3096–3102.CrossRefGoogle Scholar
  64. Papageorgiou, C. D. (2004). External wind effects on floating solar chimney (pp. 159–163). EuroPES: IASTED proceedings of power and energy systems.Google Scholar
  65. Pattanashetti J. S., & Madhukeshwara, N. (2014, Jan). Numerical Investigation and Optimization of Solar Tower Power Plant. International Journal of Research in Aeronautical and Mechanical Engineering, 2(1), 92–104.Google Scholar
  66. Pasumarthi, N., & Sherif, S. A. (1998). Experimental and theoretical performance of a demonstration solar chimney model—Part I: mathematical model development. International Journal of Energy Research, 22(3), 277–288.CrossRefGoogle Scholar
  67. Petrus, J. (2007). Optimization and control of a large-scale solar chimney power plant by. Mechanical Engineering.Google Scholar
  68. Phan, L., Singh, N., Jesneck, J., Falkowski, J., Hausfather, E., Morris, W., & Scaramellino, T. (2016). U.S. Patent Application No. 15/174,073.Google Scholar
  69. Pretorius, J. P., Kro, D. G. (2006). Critical evaluation.Google Scholar
  70. Sakir, M. T., Piash, M. B. K., & Akhter, M. S. (2014). Design, construction and performance test of a small solar chimney power plant. Global Journal of Research in Engineering, 14(1) Version 1.0.Google Scholar
  71. Schlaich, J. (1995). The solar chimney: electricity from the sun. Edition Axel Menges.Google Scholar
  72. Shen, W., Ming, T., Ding, Y., & Wu, Y. (2014). Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind. Renewable Energy, 68, 662–676.CrossRefGoogle Scholar
  73. Tingzhen, M., Wei, L., Guoling, X., Yanbin, X., Xuhu, G., & Yuan, P. (2008). Numerical simulation of the solar chimney power plant systems coupled with turbine. Renewable Energy, 33(5), 897–905.CrossRefGoogle Scholar
  74. Toghraie, D., Karami, A., Afrand, M., & Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052–1061.CrossRefGoogle Scholar
  75. Ubhale, N. N., Mallah, S. R., & Bothra, L. S. (2016). A review: numerical simulation for solar chimney by changing its radius and height. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 3(6), 05–08.Google Scholar
  76. Zhou, X., Yang, J., Xiao, B., Hou, G., & Xing, F. (2009). Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29(1), 178–185.CrossRefGoogle Scholar
  77. Zhou, X., & Xu, Y. (2018). Pressure losses in solar chimney power plant. Journal of Solar Energy Engineering, 140(2).Google Scholar
  78. Zuo, L., Zheng, Y., Li, Z., & Sha, Y. (2011). Solar chimneys integrated with sea water desalination. Desalination, 276(1–3), 207–213.  https://doi.org/10.1016/j.desal.2011.03.052.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.Department of Mechatronics EngineeringWorld University of BangladeshDhakaBangladesh

Personalised recommendations