Theory of Natural Draft Chimney and Cold Inflow



This chapter will discuss the existing research on natural convection of fluid flow and its characteristics, temperature profile at the chimney exit as well as inside the chimney and effective plume chimney height above a hot plate or heat sources.


  1. Al-Waked, R. (2010). Crosswinds effect on the performance of natural draft wet cooling towers. International Journal of Thermal Sciences, 49(1), 218–224.CrossRefGoogle Scholar
  2. Baehr, H. D., & Stephan, K. (1998). Heat and mass transfer.Google Scholar
  3. Baughman, A. V., Gadgil, A. J., & Nazaroff, W. W. (1994). Mixing of a point source pollutant by natural convection flow within a room. Indoor Air, 4(2), 114–122.CrossRefGoogle Scholar
  4. Bender, T. J., Bergstrom, D. J., & Rezkallah, K. S. (1996). A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2 wind wall study. Journal of Wind Engineering and Industrial Aerodynamics, 64, 61–72.CrossRefGoogle Scholar
  5. Byram, G. M., & Nelson, R. M. (1974). Buoyancy characteristics of a fire heat source. Fire Technology, 10, 68–79.CrossRefGoogle Scholar
  6. Chu, C. C. M. (1986). Studies of the Plumes above Air Cooled Heat Exchangers operating under Natural Convection. Ph.D. Thesis. University of Birmingham.Google Scholar
  7. Chu, C. M. (2002). A Preliminary method for estimating the effective plume chimney height above a forced-draft air-cooled heat exchanger operating under natural convection. Heat Transfer Engineering, 23(3), 3–12.CrossRefGoogle Scholar
  8. Chu, C. M. (2006). Use of Chilton - Colburn analogy to estimate effective plume chimney height of a forced draft air- colled heat exchanger. Heat Transfer Engineering, 27(9), 81–85.CrossRefGoogle Scholar
  9. Degan, G., Vasseur, P., & Bilgen, E. (1995). Convective heat transfer in a vertical anisotropic porous layer. International Journal of Heat and Mass Transfer, 38(11), 1975–1987.zbMATHCrossRefGoogle Scholar
  10. Dirkse, M. H., van Loon, W. K., van der Walle, T., Speetjens, S. L., & Bot, G. P. (2006). A computational fluid dynamics model for designing heat exchangers based on natural convection. Biosystems Engineering, 94(3), 443–452.CrossRefGoogle Scholar
  11. Dixit, H. N., & Babu, V. (2006). Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 49(3–4), 727–739.zbMATHCrossRefGoogle Scholar
  12. Dol, H. S., & Hanjalić, K. (2001). Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number. International Journal of Heat and Mass Transfer, 44(12), 2323–2344.zbMATHCrossRefGoogle Scholar
  13. Dubief, Y., & Terrapon, V. E. (2020). Heat transfer enhancement and reduction in low-Rayleigh number natural convection flow with polymer additives. Physics of Fluids, 32(3), 033103.CrossRefGoogle Scholar
  14. Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94.Google Scholar
  15. Fisher, T. S., & Torrance, K. E. (1999). Experiments on Chimney Enhanced Free Convection. Journal of Heat Transfer, 121, 603–609.CrossRefGoogle Scholar
  16. Fox, R., Mcdonald, A., & Pritchard, P. (2004). Introduction to Differential Analysis of Fluid Motion: Newtonian Fluid, Navier-Stokes Equations. _______ Introduction fluids mechanic (Vol. 6ª, p. 213). John Wiley & Sons.Google Scholar
  17. Garmize, L Kh, Dashkov, G. V., Solodukhin, A. D., & Fisenko, S. P. (1994). Laboratory modeling of the enhancement of heat and mass transfer processes in chimney—type evaporative cooling tower. Journal of Engineering Physics and Thermo physics., 66(2), 126–132.CrossRefGoogle Scholar
  18. Goldstein, R. J., Sparrow, E. M., & Jones, D. C. (1973). Natural convection mass transfer adjacent to horizontal plates. International Journal of Heat and Mass Transfer, 16(5), 1025–1035.CrossRefGoogle Scholar
  19. Hayashi, Y., Hirai, E., & Ito, N. (1976). An analysis of crossflow cooling towers. Journal of Chemical Engineering of Japan, 9(6), 458–463.CrossRefGoogle Scholar
  20. Henderson-Sellers, B. (1983). The zone of flow establishment for plumes with significant buoyancy. Applied Mathematical Modelling, 7(6), 395–398.Google Scholar
  21. Hilst, G. R. (1957). The dispersion of stack gases in stable atmospheres. Journal of Air Pollution Control Association., 7, 205–210.CrossRefGoogle Scholar
  22. Howell, J. R., Siegel, R., & Pinar Mengṻ, M. (2010). Thermal radiation heat transfer (5th edn). CRC Press, Taylor & Francis Group.Google Scholar
  23. Hunt, G. R., & Kaye, N. B. (2006). Pollutant flushing with natural displacement ventilation. Building and Environment, 41(9), 1190–1197.CrossRefGoogle Scholar
  24. Ismail, K. N., Hamid, K. H. K., Kadir, S. A. S. A., Musa, M., & Savory, R. M. (2007). Woven stainless steel wire mesh supported catalyst for NOX reduction in municipal solid waste flue (MSW) gas: synthesis and characterization. The Malaysian Journal of Analytical Sciences, 11(1), 246–254.Google Scholar
  25. Jiji, L. M. (2006). Heat convection. Netherlands: Springer.Google Scholar
  26. Jörg, O., & Scorer, R. S. (1967). An experimental study of cold inflow into chimneys. Atmospheric Environment, 1(6), 645–646.CrossRefGoogle Scholar
  27. Kaye, N. B., & Hunt, G. R. (2009). An experimental study of large area source turbulent plumes. International Journal of Heat Fluid Flow., 30(6), 1099–1105.CrossRefGoogle Scholar
  28. Khan, A., Ashraf, M., Rashad, A. M., & Nabwey, H. A. (2020). Impact of heat generation on magneto-nanofluid free convection flow about sphere in the plume region. Mathematics, 8(11), 2010.CrossRefGoogle Scholar
  29. Kołodziej, A., & Łojewska, J. (2009). Mass transfer for woven and knitted wire gauze substrates: Experiments and modelling. Catalysis Today, 147, S120–S124.CrossRefGoogle Scholar
  30. Kondrashov, A., Sboev, I., & Dunaev, P. (2017). Heater shape effects on thermal plume formation. International Journal of Thermal Sciences, 122, 85–91.CrossRefGoogle Scholar
  31. Kratjig, W. B., Konke, C., Mancevski, D., & Gruber, K. (1998). Design for durability of natural draft cooling towers by life cycle simulation. Engineering Structure, 20(10), 899–908.CrossRefGoogle Scholar
  32. Kreith, F. (1999). Fluid mechanics. Mechanical. Chemical engineering. Taylor & Francis.Google Scholar
  33. Laguerre, O., Amara, S. B., & Flick, D. (2005). Experimental study of heat transfer by natural convection in a closed cavity: application in a domestic refrigerator. Journal of Food Engineering, 70(4), 523–537.CrossRefGoogle Scholar
  34. Leu, J. S., & Jang, J. Y. (1994). The wall and free plumes above a horizontal line source in non-Darcian porous media. International Journal of Heat and Mass Transfer, 37(13), 1925–1933.zbMATHCrossRefGoogle Scholar
  35. Lienhard, I. V., & John, H. (2000). A heat transfer textbook, published by John H. Lienhard IV, Cambridge, USA.Google Scholar
  36. Lorenzini, G. (2006). Experimental analysis of the air flow field over a hot flat plate. International Journal of Thermal Science., 45, 774–781.CrossRefGoogle Scholar
  37. Lushi, E., & Stockie, J. M. (2010). An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources. Atmospheric Environment, 44(8), 1097–1107.CrossRefGoogle Scholar
  38. Mehdizadeh, F., & Rifai, H. S. (2004). Modeling point source plumes at high altitudes using a modified Gaussian model. Atmospheric Environment, 38, 821–831.CrossRefGoogle Scholar
  39. Meyer, C. J., & Kröger, D. G. (1998). Plenum chamber flow losses in forced draught air-cooled heat exchangers. Applied Thermal Engineering, 18(9–10), 875–893.Google Scholar
  40. Modi, V., & Torrance, K. E. (1987). Experimental and numerical studies of cold inflow at the exit of buoyant channel flows. Journal of Heat Transfer, 109, 692–699.CrossRefGoogle Scholar
  41. Nag, D., & Datta, A. (2007). Variation of the recirculation length of Newtonian and non-Newtonian power-law fluids in laminar flow through a suddenly expanded axisymmetric geometry.Google Scholar
  42. Nemati, H., Moradaghay, M., Shekoohi, S. A., Moghimi, M. A., & Meyer, J. P. (2020). Natural convection heat transfer from horizontal annular finned tubes based on modified Rayleigh Number. International Communications in Heat and Mass Transfer, 110, 104370.CrossRefGoogle Scholar
  43. Nielsen, H. J., & Tao, L. N. (1965, January). The fire plume above a large free-burning fire. In Symposium (International) on Combustion (Vol. 10, No. 1, pp. 965–972). Elsevier.Google Scholar
  44. Preez, A F Du, & Kroger, D. G. (1993). Effect of wind on performance of a dry-cooling tower. Heat Recovery Systems and CHP, 13(2), 139–146.CrossRefGoogle Scholar
  45. Rahman, M. M., & Chu, C. M. (2007). Design of air inlet duct to investigate the buoyancy effect of plume on the draft through laboratory scale forced draft air-cooled heat exchangers. In Presented in the 21st Symposium of Malaysian Chemical Engineers. University Putra Malaysia.Google Scholar
  46. Ravi, M. R., Henkes, R. A. W. M., & Hoogendoorn, C. J. (1994). On the high-Rayleigh-number structure of steady laminar natural-convection flow in a square enclosure. Journal of Fluid Mechanics, 262, 325–351.zbMATHCrossRefGoogle Scholar
  47. Saman, W. Y., & Alizadeh, S. (2001). Modelling and performance analysis of a cross-flow type plate heat exchanger for dehumidification/cooling. Solar Energy, 70(4), 361–372.CrossRefGoogle Scholar
  48. Schlichting, H., & Gersten, K. (2016). Boundary-layer theory. Springer.Google Scholar
  49. Schreüder, W. A., & Du Plessis, J. P. (1989). Simulation of air flow about a directly air cooled heat exchanger. Building and Environment, 24(1), 23–32.CrossRefGoogle Scholar
  50. Scorer, R. S. (1954). Theory of airflow over mountains: III. Airstream characteristics. Quarterly Journal of the Royal Meteorological Society, 80, 417.CrossRefGoogle Scholar
  51. Shiozaki, T., Maruyama, S., Mohri, T., & Hozumi, Y. (2005). Fluid flow characteristics through a wire mesh at low Reynolds number for high temperature air combustion furnace. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 71(709), 2375–2378.Google Scholar
  52. Smrekar, J., Oman, J., & Širok, B. (2006). Improving the efficiency of natural draft cooling towers. Energy Conversion and Management, 47(9–10), 1086–1100.CrossRefGoogle Scholar
  53. Streeter, V. L. (1971). Fluid Mechanics (5th edn). International Student Edition, McGraw hill Kogakusha, Ltd. Singapore.Google Scholar
  54. Vlasov, A. V., Dashkov, G. V., Solodukhin, A. D., & Fisenko, S. P. (2002). Investigation of the internal aerodynamics of the chimney type evaporative cooling tower. Journal of Engineering Physics and Thermophysics, Springer, New York, 75(5), 1086–1091.CrossRefGoogle Scholar
  55. Wang, I. T. (1996). Determination of transport wind speed in the gaussian plume difusion equation for low lying point sources. Atmospheric Environment, 30(4), 661–665.CrossRefGoogle Scholar
  56. Wei, Q. D., Zhang, B. Y., Liu, K. Q., Du, X. D., & Meng, X. Z. (1995). A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers. Journal of Wind Engineering and Industrial Aerodynamics, 1(54), 633–643.CrossRefGoogle Scholar
  57. Wong, S. C., & Chu, S. H. (2017). Revisit on natural convection from vertical isothermal plate arrays–effects of extra plume buoyancy. International Journal of Thermal Sciences, 120, 263–272.CrossRefGoogle Scholar
  58. Zhai, Z., & Fu, S. (2006). Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods. Applied Thermal Engineering, 26(10), 1008–1017.MathSciNetCrossRefGoogle Scholar
  59. Zhou, X., Yang, J., Ochieng, R. M., Li, X., & Xiao, B. (2009). Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow. Atmospheric Research, 91(1), 26–35.CrossRefGoogle Scholar
  60. Zinoubi, J., Maad, B. R., & Belghith, A. (2005). Experimental study of the resulting flow of plume-thermosiphon interaction: Application to chimney problems. Applied Thermal Engineering, 25(4), 533–544.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringWorld University of BangladeshDhakaBangladesh
  2. 2.Chemical Engineering Programme, Faculty of EngineeringUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations