Introduction of Cold Inflow Free Solar Chimney



Natural draft and forced draft chimneys are used in many industries to remove dust and dirt, hot gases and air from the process side to the atmosphere. Among them, the natural draft chimney is operated due to the effect of temperature difference between process side and ambient which is known as buoyancy force or stack effect. The process of flow is continuous as long as the buoyancy or stack effect is present. Solar chimney is a natural draft chimney that is used to generate electricity from solar energy; therefore, solar chimney is also known as solar updraft system. It is an economical and environmental friendly system to generate electricity and ventilation for houses or space. There are numerous works that have been found which discuss the enhancement of solar chimney power plant efficiency. The works also include the applications of solar chimney and feasibility study of hybrid systems. The researchers used experimental and simulation models for the study of solar chimney performance and its structural design. The purpose of this book is to provide information about the solar chimney for design. Solar chimney applications in many areas and incorporated in this book are drawn mainly from industries as dryers and households as natural ventilation systems.


  1. Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928–2934.CrossRefGoogle Scholar
  2. Abdeen, A., Serageldin, A. A., Ibrahim, M. G., El-Zafarany, A., Ookawara, S., & Murata, R. (2019). Solar chimney optimization for enhancing thermal comfort in Egypt: An experimental and numerical study. Solar Energy, 180, 524–536.CrossRefGoogle Scholar
  3. Ahmed, S. T., & Chaichan, M. T. (2011). A study of free convection in a solar chimney model. Engineering and Technology Journal, 29(14), 2986–2997.Google Scholar
  4. Bassiouny, R., & Koura, N. S. (2008). An analytical and numerical study of solar chimney use for room natural ventilation. Energy and Buildings, 40(5), 865–873.CrossRefGoogle Scholar
  5. Bender, T. J., Bergstrom, D. J., & Rezkallah, K. S. (1996). A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2. Wind wall study. Journal of Wind Engineering and Industrial Aerodynamics, 64(1), 61–72.Google Scholar
  6. Bodoia, J. R., & Osterle, J. F. (1962). The development of free convection between heated vertical plates. Journal of Heat Transfer, 84(1), 40–43.CrossRefGoogle Scholar
  7. Bouchair, A. (1994). Solar chimney for promoting cooling ventilation in southern Algeria. Building Services Engineering Research and Technology, 15(2), 81–93.CrossRefGoogle Scholar
  8. Cao, F., Li, H., Ma, Q., & Zhao, L. (2014). Design and simulation of a geothermal-solar combined chimney power plant. Energy Conversion and Management, 84, 186–195.CrossRefGoogle Scholar
  9. Cao, F., Liu, Q., Yang, T., Zhu, T., Bai, J., & Zhao, L. (2018). Full-year simulation of solar chimney power plants in Northwest China. Renewable Energy, 119, 421–428.CrossRefGoogle Scholar
  10. Chen, Z. D., Bandopadhayay, P., Halldorsson, J., Byrjalsen, C., Heiselberg, P., & Li, Y. (2003). An experimental investigation of a solar chimney model with uniform wall heat flux. Building and Environment, 38(7), 893–906.CrossRefGoogle Scholar
  11. Cheng, J. (Ed.). (2010). Biomass to renewable energy processes. Raleigh, North Carolina: Taylor & Francis Group.Google Scholar
  12. Zhang, C.-H. (2007). Thermodynamic analysis and calculation of large-scale solar chimney electricity generation plant. Renewable Energy Resources, 2, 2.Google Scholar
  13. Chu, C. M., Rahman, M. M., & Kumaresan, S. (2012). Effect of cold inflow on chimney height of natural draft cooling towers. Nuclear Engineering and Design, 249, 125–131.CrossRefGoogle Scholar
  14. Chu, C. M. (2002). A Preliminary method for estimating the effective plume chimney height above a forced-draft air-cooled heat exchanger operating under natural convection. Heat Transfer Engineering, 23(3), 3–12.CrossRefGoogle Scholar
  15. Chu, C. C., & Rahman, M. M. (2009, January). A method to achieve robust aerodynamics and enhancement of updraft in natural draft dry cooling towers. In Heat Transfer Summer Conference (Vol. 43581, pp. 817–823).Google Scholar
  16. Dai, Y., Huang, H., & Wang, R. (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295–1304. Scholar
  17. Dai, Y., Kaiser, A. S., Lu, Y., Klimenko, A. Y., Dong, P., & Hooman, K. (2019). Addressing the adverse cold air inflow effects for a short natural draft dry cooling tower through swirl generation. International Journal of Heat and Mass Transfer, 145, 118738.CrossRefGoogle Scholar
  18. Damjakob, H., & Tummers, N. (2004, April), Back to the future of the hyperbolic concrete tower. In Proceedings of the Fifth International Symposium on Natural Draught Cooling Towers (pp. 3–21). Istanbul: AA Balkema Publishers.Google Scholar
  19. Dirkse, M. H., van Loon, W. K., van der Walle, T., Speetjens, S. L., & Bot, G. P. (2006). A computational fluid dynamics model for designing heat exchangers based on natural convection. Biosystems Engineering, 94(3), 443–452.CrossRefGoogle Scholar
  20. Dhahri, A., & Omri, A. (2013). A review of solar chimney power generation technology. International Journal of Engineering and Advanced Technology, 2(3), 1–17.Google Scholar
  21. Doyle, P. T., & Benkly, G. J. (1973). Use fanless air coolers. Hydrocarbon Processing, 52(7), 81–86.Google Scholar
  22. Duvenhage, K. K. D. G., & Kröger, D. G. (1996). The influence of wind on the performance of forced draught air-cooled heat exchangers. Journal of Wind Engineering and Industrial Aerodynamics, 62(2–3), 259–277.CrossRefGoogle Scholar
  23. Duvenhage, K., Vermeulen, J. A., Meyer, C. J., & Kröger, D. G. (1996). Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers. Applied Thermal Engineering, 16(8–9), 741–752.CrossRefGoogle Scholar
  24. Elenbaas, W. (1942). Heat dissipation of parallel plates by free convection. Physica, 9(1), 1–28. Scholar
  25. Fasel, H. F., Meng, F., Shams, E., & Gross, A. (2013). CFD analysis for solar chimney power plants. Solar Energy, 98, 12–22.CrossRefGoogle Scholar
  26. Fisher, T. S., & Torrance, K. E. (1999). Experiments on chimney-enhanced free convection.Google Scholar
  27. Felsch, T., Strauss, G., Perez, C., Rego, J. M., Maurtua, I., Susperregi, L., & Rodríguez, J. R. (2015). Robotized inspection of vertical structures of a solar power plant using NDT techniques. Robotics, 4(2), 103–119.CrossRefGoogle Scholar
  28. Golus̆in, M., Dodić, S., & Popov, S. (2013). Sustainable energy management. Academmic.Google Scholar
  29. Gan, G., & Riffat, S. B. (1998). A numerical study of solar chimney for natural ventilation of buildings with heat recovery. Applied Thermal Engineering, 18(12), 1171–1187.CrossRefGoogle Scholar
  30. Haaf, W. (1984). Solar Chimneys. International Journal of Solar Energy, 2(2), 141–161. Scholar
  31. Hamdan, M. O. (2011). Analysis of a solar chimney power plant in the Arabian Gulf region. Renewable Energy, 36(10), 2593–2598. Scholar
  32. Jörg, O., & Scorer, R. S. (1967). An experimental study of cold inflow into chimneys. Atmospheric Environment, 1(6), 645–654.Google Scholar
  33. Kihm, K. D., Kim, J. H., & Fletcher, L. S. (2013). Onset of flow reversal and penetration length of natural convective flow between isothermal vertical walls. Journal of Chemical Information and Modeling, 53(9), 1689–1699.Google Scholar
  34. Kasaeian, A. B., Molana, S., Rahmani, K., & Wen, D. (2017). A review on solar chimney systems. Renewable and Sustainable Energy Reviews, 67, 954–987.CrossRefGoogle Scholar
  35. Kitamura, Y., & Ishizuka, M. (2004). Chimney effect on natural air cooling of electronic equipment under inclination. Journal of Electronic Packaging, 126(4), 423–428.CrossRefGoogle Scholar
  36. Kreith, F., Kreider, J. F., & Krumdieck, S. (2010). Principles of sustainable energy: Mechanical and Aerospace Engineering Series. CRC Press.Google Scholar
  37. Koonsrisuk, A., Lorente, S., & Bejan, A. (2010). Constructal solar chimney configuration. International Journal of Heat and Mass Transfer, 53(1–3), 327–333.zbMATHCrossRefGoogle Scholar
  38. Khanal, R., & Lei, C. (2012). Flow reversal effects on buoyancy induced air flow in a solar chimney. Solar Energy, 86(9), 2783–2794.CrossRefGoogle Scholar
  39. Kumaresan, S., Rahman, M. M., Chu, C. M., & Phang, H. K. (2013). A chimney of low height to diameter ratio for solar crops dryer. In Developments in Sustainable Chemical and Bioprocess Technology (pp. 145–150). Springer.Google Scholar
  40. Larbi, S., Bouhdjar, A., & Chergui, T. (2010). Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renewable and Sustainable Energy Reviews, 14(1), 470–477.CrossRefGoogle Scholar
  41. Lorenzini, G. (2006). Experimental analysis of the air flow field over a hot flat plate. International Journal of Thermal Sciences, 45(8), 774–781.CrossRefGoogle Scholar
  42. Lucier, R. E. (1981). U.S. Patent No. 4,275,309. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  43. Maia, C., Ferreira, A., M. Valle, R., & F. B. Cortez, M. (2009). Analysis of the airflow in a prototype of a solar chimney dryer. Heat Transfer Engineering, 30.Google Scholar
  44. Matishov, G. G., Dzhenyuk, S. L., Moiseev, D. V., & Zhichkin, A. P. (2016). Trends in hydrological and ice conditions in the large marine ecosystems of the Russian Arctic during periods of climate change. Environmental Development, 17, 33–45.CrossRefGoogle Scholar
  45. Meyer, C. J., & Kröger, D. G. (2004). Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour. Applied Thermal Engineering, 24(2–3), 359–371.CrossRefGoogle Scholar
  46. Nizetic, S., Ninic, N., & Klarin, B. (2008). Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy, 33(11), 1680–1690.CrossRefGoogle Scholar
  47. Nieuwenhuisen, M., Quenzel, J., Beul, M., Droeschel, D., Houben, S., & Behnke, S. (2017, June). ChimneySpector: Autonomous MAV-based indoor chimney inspection employing 3D laser localization and textured surface reconstruction. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 278–285). IEEE.Google Scholar
  48. Pasumarthi, N., & Sherif, S. A. (1998). Experimental and theoretical performance of a demonstration solar chimney model—Part I: Mathematical model development. International Journal of Energy Research, 22(3), 277–288.CrossRefGoogle Scholar
  49. Prasad, P. V. V., Thomas, J. M. G., & Narayanan, S. (2017). Global warming effects. In Encyclopedia of applied plant sciences (pp. 289–299).
  50. Rabehi, R., Chaker, A., Aouachria, Z., & Tingzhen, M. (2017). CFD analysis on the performance of a solar chimney power plant system: Case study in Algeria. International Journal of Green Energy, 14(12), 971–982.CrossRefGoogle Scholar
  51. Rahman, M. M., Chu, C. M., Tahir, A. M., bin Ismail, M. A., bin Misran, M. S., & Ling, L. S. (2017). Experimentally identify the effective plume chimney over a natural draft chimney model. MS&E, 217(1), 012002Google Scholar
  52. Schlaich, J. (1995). The solar chimney: electricity from the sun. Edition Axel Menges.Google Scholar
  53. Sparrow, E. M., Ruiz, R., & Azevedo, L. F. A. (1988). Experimental and numerical investigation of natural convection in convergent vertical channels. International Journal of Heat and Mass Transfer, 31(5), 907–915.CrossRefGoogle Scholar
  54. Somsila, P., Teeboonma, U., & Seehanam, W. (2010, June). Investigation of buoyancy air flow inside solar chimney using CFD technique. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010) (pp. 1–7). IEEE.Google Scholar
  55. Sudprasert, S., Chinsorranant, C., & Rattanadecho, P. (2016). Numerical study of vertical solar chimneys with moist air in a hot and humid climate. International Journal of Heat and Mass Transfer, 102, 645–656.CrossRefGoogle Scholar
  56. Spencer, S., Chen, Z. D., Li, Y., & Haghighat, F. (2000). Experimental investigation of a solar chimney natural ventilation system. In Air distribution in rooms (pp. 813–818).Google Scholar
  57. Verboom, G. K., & Van Koten, H. (2010). Vortex excitation: Three design rules tested on 13 industrial chimneys. Journal of Wind Engineering and Industrial Aerodynamics, 98(3), 145–154.CrossRefGoogle Scholar
  58. Zhai, Z., & Fu, S. (2006). Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods. Applied Thermal Engineering, 26(10), 1008–1017.MathSciNetCrossRefGoogle Scholar
  59. Zhou, X., Yang, J., Xiao, B., & Hou, G. (2007). Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering, 27(11–12), 2044–2050.CrossRefGoogle Scholar
  60. Zhou, X., Wang, F., & Ochieng, R. M. (2010). A review of solar chimney power technology. Renewable and Sustainable Energy Reviews, 14(8), 2315–2338.CrossRefGoogle Scholar
  61. Zhou, X., Xiao, B., Liu, W., Guo, X., Yang, J., & Fan, J. (2010). Comparison of classical solar chimney power system and combined solar chimney system for power generation and seawater desalination. Desalination, 250(1), 249–256.CrossRefGoogle Scholar
  62. Zuo, L., Zheng, Y., Li, Z., & Sha, Y. (2011). Solar chimneys integrated with seawater desalination. Desalination, 276.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringWorld University of BangladeshDhakaBangladesh
  2. 2.Faculty of EngineeringUniversiti Malaysia SabahSabahMalaysia
  3. 3.Faculty of EngineeringUniversiti Malaysia SabahSabahMalaysia

Personalised recommendations