Skip to main content

Cellular and Molecular Mechanisms of Repurposed Antidiabetic Drug as an Adjunctive Treatment for Tuberculosis

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Apart from the accessibility of antitubercular therapy (ATT), tuberculosis (TB) emerged to be a chief cause of mortality around the world. The present ATT had a disadvantage of lengthy period that creates a problem of noncompliance in patients and growth of resistance. The greater price and delayed temperament of TB medication development coupled with low advantages lead to repurposing of complementary drugs which may contribute as an innovative pharmaceutical approach. Metformin has currently engrossed a major consideration as a host-directed adjunctive therapy (HDT) and has several complementary roles on cellular and molecular metabolism, immunity of host, and transcription of genes engaged in innate host responses to M. tuberculosis. It has an inhibitory effect on mitochondrial complex I and has been found to increase AMP/ATP ratio, with the help of a series of several pathways, and causes bacterial killing. This chapter would discuss in detail about the cellular and molecular mode of action of metformin including its impact on T helper cell 1 (TH1) along with trends which metformin demonstrates in reference to CD4+ and CD8+ cells. The necessity for adjunctive host-targeted therapy and the synergistic role of metformin with other antitubercular medications have been thoroughly debated. Novel strategy to fight drug-resistant TB in concurrence with future perspectives has been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaman K (2010) Tuberculosis: a global health problem. J Health Popul Nutr 28(2):111. https://doi.org/10.3329/jhpn.v28i2.4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2018) Global tuberculosis report 2018. WHO United Nations. https://www.who.int/tb/global-report-2019

  3. Uhlin M, Andersson J, Zumla A, Maeurer M (2012) Adjunct immunotherapies for tuberculosis. J Infect Dis 205(suppl_2):S325–S334. https://doi.org/10.1093/infdis/jis197

    Article  CAS  PubMed  Google Scholar 

  4. Schnippel K, Rosen S, Shearer K, Martinson N, Long L, Sanne I, Variava E (2013) Costs of inpatient treatment for multi-drug-resistant tuberculosis in South Africa. Tropical Med Int Health 1:109–116. https://doi.org/10.1111/tmi.12018

    Article  Google Scholar 

  5. Jeon CY, Murray MB (2008) Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5:e152. https://doi.org/10.1371/journal.pmed.0050152

    Article  PubMed  PubMed Central  Google Scholar 

  6. Siddiqui AN, Hussain S, Siddiqui N, Khayyam KU, Tabrez S, Sharma M (2018) Detrimental association between diabetes and tuberculosis: an unresolved double trouble. Diabetes Metab Synd Clin Res Rev 12(6):1101–1107. https://doi.org/10.1016/j.dsx.2018.05.009

    Article  Google Scholar 

  7. Yu X, Li L, Xia L, Feng X, Chen F, Cao S, Wei X (2019) Impact of metformin on the risk and treatment outcomes of tuberculosis in diabetics: a systematic review. BMC Infect Dis 19(1):859. https://doi.org/10.1186/s12879-019-4548-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Degner NR, Wang JY, Golub JE, Karakousis PC (2018) Metformin use reverses the increased mortality associated with diabetes mellitus during tuberculosis treatment. Clin Infect Dis 66(2):198–205. https://doi.org/10.1093/cid/cix819

    Article  CAS  PubMed  Google Scholar 

  9. Gomez DI, Twahirwa M, Schlesinger LS, Restrepo BI (2013) Reduced Mycobacterium tuberculosis association with monocytes from diabetes patients that have poor glucose control. Tuberculosis (Edinb) 93:192–197. https://doi.org/10.1016/j.tube.2012.10.003

    Article  CAS  Google Scholar 

  10. Kumar Nathella P, Babu S (2017) Influence of diabetes mellitus on immunity to human tuberculosis. Immunology 152:13–24. https://doi.org/10.1111/imm.12762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker MA, Harries AD, Jeon CY et al (2011) The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med 9:81. https://doi.org/10.1186/1741-7015-9-81

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alisjahbana B, Sahiratmadja E, Nelwan EJ et al (2007) The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis 45:428–435. https://doi.org/10.1086/519841

    Article  PubMed  Google Scholar 

  13. Niazi K, Kalra S (2012) Diabetes and tuberculosis: a review of the role of optimal glycemic control. J Diabetes Metab Disord 11(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Stevenson R, Critchley JA, Forouhi NG et al (2007) Diabetes and the risk of tuberculosis: a neglected threat to public health? Chronic Illn 3(3):228–245

    Article  PubMed  Google Scholar 

  15. Jeon Y, Murray MB (2008) Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5(7):0050152

    Article  Google Scholar 

  16. Alisjahbana B, Sahiratmadja E, Nelwan EJ et al (2007) The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis 45(4):428–435

    Article  PubMed  Google Scholar 

  17. Feleke Y, Abdulkadir J, Aderaye G (1999) Prevalence and clinical features of tuberculosis in Ethiopian diabetic patients. East Afr Med J 76(7):361–364

    CAS  PubMed  Google Scholar 

  18. Swai BM, Mclarty DG, Mugusi F (1990) Tuberculosis in diabetic patients in tanzania. Trop Dr 20(4):147–150

    Article  CAS  Google Scholar 

  19. Restrepo I, Fisher-Hoch SP, Crespo JG et al (2007) Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiol Infect 135(3):483–491

    Article  CAS  PubMed  Google Scholar 

  20. Shaikh MA, Singla R, Khan NB, Sharif NS, Saigh MO (2003) Does diabetes alter the radiological presentation of pulmonary tuberculosis. Saudi Med J 24(3):278–281

    PubMed  Google Scholar 

  21. Wang J-Y, Lee L-N, Hsueh P-R (2005) Factors changing the manifestation of pulmonary tuberculosis. Int J Tuberc Lung Dis 9(7):777–783

    CAS  PubMed  Google Scholar 

  22. Mugusi F, Swai ABM, Alberti KGMM, McLarty DG (1990) Increased prevalence of diabetes mellitus in patients with pulmonary tuberculosis in Tanzania. Tuberculosis 71(4):271–276

    CAS  Google Scholar 

  23. Heysell SK, Moore JL, Keller SJ, Houpt ER (2010) Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis 16(10):1546–1553

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang J-T, Dou H-Y, Yen C-L et al (2011) Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: a potential role in the emergence of multidrug-resistance. J Formos Med Assoc 110(6):372–381

    Article  PubMed  Google Scholar 

  25. Baker MA, Harries AD, Jeon CY et al (2011) The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reis-Santos B, Gomes T, Locatelli R et al (2014) Treatment outcomes in tuberculosis patients with diabetes: a polytomous analysis using Brazilian surveillance system. PLoS One 9(7):e100082

    Article  PubMed  PubMed Central  Google Scholar 

  27. Young F, Wotton CJ, Critchley JA, Unwin NC, Goldacre MJ (2010) Increased risk of tuberculosis disease in people with diabetes mellitus: record-linkage study in a UK population. J Epidemiol Community Health 2010:114595

    Google Scholar 

  28. Oluboyo PO, Erasmus RT (1990) The significance of glucose intolerance in pulmonary tuberculosis. Tuberculosis 71(2):135–138

    CAS  Google Scholar 

  29. Basoglu OK, Bacakoglu F, Cok G, Saymer A, Ates M (1999) The oral glucose tolerance test in patients with respiratory infections. Monaldi Arch Chest Dis 54:307–310

    CAS  PubMed  Google Scholar 

  30. Jeon CY, Harries AD, Baker MA et al (2010) Bi-directional screening for tuberculosis and diabetes: a systematic review. Tropical Med Int Health 15(11):1300–1314

    Article  Google Scholar 

  31. Guptan A, Shah A (2000) Tuberculosis and diabetes: an appraisal. Ind J Tub 47(3):2–8

    Google Scholar 

  32. Bansal V, Asmar NE, Selman WR, Arafah BM (2015) Pitfalls in the diagnosis and management of Cushing’s syndrome. Neurosurg Focus 38(2):E4

    Article  PubMed  Google Scholar 

  33. Atkin SL, Masson EA, Bodmer CW, Walker BA, White MC (1993) Increased Insulin Requirement in a Patient with Type 1 Diabetes on Rifampicin. Diabet Med 10(4):392–392

    Article  CAS  PubMed  Google Scholar 

  34. Lebovitz HE (1990) Oral hypoglycemic agents. In: Rifkin H, Porte D Jr (eds) Ellenberg and Rifkins’s Diabetes Mellitus, 4th edn. Elsevier, New York, NY

    Google Scholar 

  35. Geerlings SE, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26(3–4):259–265

    Article  CAS  PubMed  Google Scholar 

  36. Tsukaguchi K, Yoneda T, Yoshikawa M et al (1992) Case study of interleukin-1𝛽, tumor necrosis factor ALPHA, and interleukin-6 production peripheral blood monocytes patients diagnosed with diabetes mellitus complicated by pulmonary tuberculosis. Kekkaku (Tuberculosis) 67(12):755–760

    CAS  Google Scholar 

  37. Sidibé EH (2007) Diabéte et tuberculosepulmonaire: aspects épidémiologiques, physiopathologiques et symptomatologiques. Cahiers d’´Etudes et de Recherches Francophones/Santé 17(1):29–32

    Google Scholar 

  38. Moutschen MP, Scheen AJ, Lefebvre PJ (1992) Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved. Relevance to the increased susceptibility of diabetic patients to specific infections. Diabetes Metab 18(3):187–201

    CAS  Google Scholar 

  39. Yorke E, Atiase Y, Akpalu J, Sarfo-Kantanka O, Boima V, Dey ID (2017) The bidirectional relationship between tuberculosis and diabetes. Tuberculosis research and treatment

    Google Scholar 

  40. Zack MB, Fulkerson LL, Stein E (1973) Glucose intolerance in pulmonary tuberculosis. Am Rev Respir Dis 108(5):1164–1169

    CAS  PubMed  Google Scholar 

  41. Aguirre F, Brown A, Cho NH, Dahlquist G, Dodd S, Dunning T, Hirst M, Hwang C, Magliano D, Patterson C, Scott C, Shaw J, Soltesz G, Usher-Smith J, Whiting D (2013) IDF diabetes atlas: sixth edition, 6th edn. International Diabetes Federation

    Google Scholar 

  42. Venkatesan K (1992) Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 22(1):47–65

    Article  CAS  PubMed  Google Scholar 

  43. Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624

    CAS  PubMed  Google Scholar 

  44. Madsbad S (2009) Treatment of type 2 diabetes with incretin-based therapies. Lancet 373(9662):438–439

    Article  PubMed  Google Scholar 

  45. American Diabetes A (2016) Standards of Medical Care in Diabetes—2016 Abridged for Primary Care Providers. Clin Diabetes 34(1):3–21

    Article  Google Scholar 

  46. Beran D, Ewen M, Laing R (2016) Constraints and challenges in access to insulin: a global perspective. Lancet Diabetes Endocrinol 4(3):275–285

    Article  PubMed  Google Scholar 

  47. Riza L, Pearson F, Ugarte-Gil C et al (2014) Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol 2(9):740–753

    Article  PubMed  PubMed Central  Google Scholar 

  48. World Health Organisation (2011) Collaborative framework for care and control of tuberculosis and diabetes

    Google Scholar 

  49. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivisto KT (2001) Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 69:400–406

    Article  CAS  PubMed  Google Scholar 

  50. Atkin S, Masson E, Bodmer C, Walker B, White M (1992) Increased insulin requirement in a patient with type 1 diabetes on rifampicin. Diab Med 10:202

    Google Scholar 

  51. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT (2003) Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42:819–850

    Article  CAS  PubMed  Google Scholar 

  52. Niemi M, Backman JT, Neuvonen PJ (2004) Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin Pharmacol Ther 76:239–249

    Article  CAS  PubMed  Google Scholar 

  53. Park JY, Kim KA, Kang MH, Kim SL, Shin JG (2004) Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects. Clin Pharmacol Ther 75:157–162

    Article  CAS  PubMed  Google Scholar 

  54. Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ (2006) Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol 61:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ (2003) Effect of rifampicin on the pharmacokinetics and pharmacodynamics of nateglinide in healthy subjects. Br J Clin Pharmacol 56:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hatorp V, Hansen KT, Thomsen MS (2003) Influence of drugs interacting with CYP3A4 on the pharmacokinetics, pharmacodynamics, and safety of the prandial glucose regulator repaglinide. J Clin Pharmacol 43:649–660

    Article  CAS  PubMed  Google Scholar 

  57. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivisto KT (2000) Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 68:495–500

    Article  CAS  PubMed  Google Scholar 

  58. Takasu N, Yamada T, Miura H et al (1982) Rifampicin-induced early phase hyperglycemia in humans. Am Rev Respir Dis 125:23–27

    CAS  PubMed  Google Scholar 

  59. Waterhouse M, Wilson C, White VL, Chowdhury TA (2005) Resolution of insulin-requiring diabetes after cessation of chemotherapy for tuberculosis. J R Soc Med 98:270–271

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nijland HM, Ruslami R, Stalenhoef JE et al (2006) Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis 43:848–854

    Article  CAS  PubMed  Google Scholar 

  61. Gwilt PR, Nahhas RR, Tracewell WG (1991) The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet 20:477–490

    Article  CAS  PubMed  Google Scholar 

  62. Peloquin CA (2002) Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62:2169–2183

    Article  CAS  PubMed  Google Scholar 

  63. Churchyard GJ, Kaplan G, Fallows D, Wallis RS, Onyebujoh P, Rook GA (2009) Advances in immunotherapy for tuberculosis treatment. Clin Chest Med 30:769–782. https://doi.org/10.1016/j.ccm.2009.08.009

    Article  PubMed  Google Scholar 

  64. Hawn TR, Matheson AI, Maley SN, Vandal O (2013) Host directed therapeutics for tuberculosis: can we harness the host? Microbiol Mol Biol 77:608–627. https://doi.org/10.1128/MMBR.00032-13

    Article  CAS  Google Scholar 

  65. Zumla A, Chakaya J, Hoelscher M, Toumi FN, Rustomjee R, Vilaplana C, Yeboah-Manu D, Rasolofo V, Munderi P, Singh N, Aklillu E (2015) Towards host-directed therapies for tuberculosis. Nat Rev Drug Discov 14(8). https://doi.org/10.1038/nrd4696.511.14:511-512

  66. Kim YR, Yang CS (2018) Host-directed therapeutics as a novel approach for tuberculosis treatment. J Microb Biotechnol 27(9):1549–1558. https://doi.org/10.3389/fcimb.2018.00275

    Article  CAS  Google Scholar 

  67. Zumla AI, Gillespie SH, Hoelscher M, Philips PP, Cole ST, Abubakar I, McHugh TD, Schito M, Maeurer M, Nunn AJ (2014) New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis 14(4):327–340. https://doi.org/10.1016/S1473-3099(13)70328-1

    Article  CAS  PubMed  Google Scholar 

  68. Sharma D, Dhuriya YK, Deo N, Bisht D (2017) Repurposing and revival of the drugs: a new approach to combat the drug resistant tuberculosis. Front Microbiol 11:2452. https://doi.org/10.3389/fmicb.2017.02452.8

    Article  Google Scholar 

  69. Padmapriyadarsini C, Bhavani PK, Natrajan M, Ponnuraja C, Kumar H, Gomathy SN, Guleria R, Jawahar SM, Singh M, Balganesh T, Swaminathan S (2019) Evaluation of metformin in combination with rifampicin containing antituberculosis therapy in patients with new, smear-positive pulmonary tuberculosis (METRIF): study protocol for a randomised clinical trial. BMJ Open 9(3):e024363

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH et al (2014) The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 20(5):785–802. https://doi.org/10.4161/auto.28072.10

    Article  Google Scholar 

  71. Adil M, Khan RA, Kalam A, Venkata SK, Kandhare AD, Ghosh P, Sharma M (2017) Effect of antidiabetic drugs on bone metabolism: evidence from preclinical and clinical studies. Pharmacol Rep 69(6):1328–1340. https://doi.org/10.1016/j.pharep.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  72. Singhal A, Jie L, Kumar P, Hong GS, Leow MKS, Paleja B, Tsenova L, Kurepina N, Chen J, Zolezzi F, Kreiswirth B (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):59. https://doi.org/10.1126/scitranslmed.3009885

    Article  CAS  Google Scholar 

  73. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H (2015) Immune-mediated antitumor effect by type 2 diabetes drug metformin. Proc Natl Acad Sci 10(6):1809–1814. https://doi.org/10.1073/pnas.1417636112

    Article  CAS  Google Scholar 

  74. Siddiqui AN, Hussain S, Siddiqui N, Khayyam KU, Tabrez S, Sharma M (2018) Detrimental association between diabetes and tuberculosis: an unresolved double trouble. Diabetes Metab Syndr 12(6):1101–1107. https://doi.org/10.1016/j.dsx.2018.05.009

    Article  PubMed  Google Scholar 

  75. Mishra R, Krishan S, Siddiqui AN, Kapur P, Khayyam KU, Sharma M (2020) Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: drug repurposing. Tuberculosis 11:101902. https://doi.org/10.1016/j.tube.2020.101902

    Article  CAS  Google Scholar 

  76. Koo MS, Manca C, Yang G, O’Brien P, Sung N, Tsenova L, Subbian S, Fallows D, Muller G, Ehrt S, Kaplan G (2011) Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One 6:e17091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lyadova V, Eruslanov EB, Khaidukov SV, Yeremeev VV, Majorov KB, Pichugin AV, Nikonenko BV, Kondratieva TK, Apt AS (2000) Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J Immunol 165:5921–5931

    Article  CAS  PubMed  Google Scholar 

  78. Chackerian A, Behar SM (2003) Susceptibility to Mycobacterium tuberculosis: lessons from inbred strains of mice. Tuberculosis 83:279–285

    Article  PubMed  Google Scholar 

  79. Marupuru S, Senapati P, Pathadka S, Miraj SS, Unnikrishnan MK (2017) Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz J Infect Dis 21(3):312–316. https://doi.org/10.1016/j.bjid.2017.01.001

    Article  PubMed  Google Scholar 

  80. Lee YJ, Han SK, Park JH, Lee JK, Kim DK, Chung HS, Heo EY (2018) The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean J Intern Med 33(5):933. https://doi.org/10.3904/kjim.2017.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yew WW, Chang KC, Chan DP, Zhang Y (2019) Metformin as a host-directed therapeutic in tuberculosis: is there a promise? Tuberculosis 115:76–80. https://doi.org/10.1016/j.tube.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  82. Vashisht R, Brahmachari SK (2015) Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med 13:83. https://doi.org/10.1186/s12967-015-0443-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lachmandas E, Eckold C, Böhme J, Koeken VA, Marzuki MB, Blok B, Arts RJ, Chen J, Teng KW, Ratter J, Smolders EJ (2019) Metformin alters human host responses to Mycobacterium tuberculosis in healthy subjects. J Infect Dis 220(1):139–150. https://doi.org/10.1093/infdis/jiz064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dooley KE, Chaisson RE (2009) Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis 9(12):737–746

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dooley KE, Tang T, Golub JE, Dorman SE, Cronin W (2009) Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis. Am J Trop Med Hygiene 80(4):634–639

    Article  Google Scholar 

  86. Singla R, Khan N, Al-Sharif N, Al-Sayegh MO, Shaikh MA, Osman MM (2006) Influence of diabetes on manifestations and treatment outcome of pulmonary TB patients. Int J Tuberc Lung Dis 10(1):74–79

    CAS  PubMed  Google Scholar 

  87. Kameda K, Kawabata S, Masuda N (1990) Follow-up study of short course chemotherapy for pulmonary tuberculosis complicated with diabetes mellitus. Kekkaku 65(12):791–803

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, R.K., Mishra, R., Sharma, K., Sharma, M. (2021). Cellular and Molecular Mechanisms of Repurposed Antidiabetic Drug as an Adjunctive Treatment for Tuberculosis. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_15

Download citation

Publish with us

Policies and ethics