Skip to main content

Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market

  • Chapter
  • First Online:
Renewable Energy and Future Power Systems

Abstract

A critical aspect of power systems is the generation cost of plants in producing the electrical energy required by consumers, this cost will be finally reflected in the monthly consumption bill. A nonoptimal dispatch will produce high tariffs while a well-designed dispatch will result in the lowest generation costs and, therefore, the lowest possible tariffs. The purpose of the present study is precisely to design a strategy to find the generation plan that produces the lowest possible costs and then make a comparison between an optimal economic dispatch that considers generation and transmission without energy contracts versus the dispatch that includes the 2017 energy purchase contracts signed by the state of Honduras. To achieve this goal, this study formulates the cost equation, capacity, and transmission line constraints, and then applies the nonlinear programming techniques to solve it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.R. Chamorro, C.A. Ordonez, J.C. Peng, M. Ghandhari, Non-synchronous generation impact on power systems coherency. IET Gener. Transm. Distrib. 10(10), 2443–2453 (2016). https://doi.org/10.1049/iet-gtd.2015.1233

  2. D. Topic, H.R. Chamorro, G. Knezevic, R. Rye, F. Gonzalez-Longatt, V.K. Sood, J. Perko, Analysis of PV systems and charging stations integration into the public lighting infrastructure, in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (2019), pp. 1–5

    Google Scholar 

  3. S. Abu-elzait, R. Parkin, The effect of dispatch strategy on maintaining the economic viability of pv-based microgrids, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019), pp. 1203–1205

    Google Scholar 

  4. J.S. Obando-Ceron, R. Moreno-Chuquen, Impacts of demand response under wind power uncertainty in network-constrained electricity markets, in IEEE ANDESCON (2018), pp. 1–5

    Google Scholar 

  5. M.H. Albadi, A.S. Al-Hinai, M.J.A. Maharbi, A.M.A. Hosni, M.A.A. Hajri, Economic dispatch of oman’s main interconnected system in presence of 500mw solar pv plant in ibri, in IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (2019), pp. 204–208

    Google Scholar 

  6. D. Liu, J. Guo, Y. Huang, W. Wang, P. Wang, A dynamic economic dispatch method of wind integrated power system considering the total probability of wind power, in 2nd IET Renewable Power Generation Conference (RPG 2013), (2013), pp. 1–4

    Google Scholar 

  7. L. Ran, L. Zhengyu, C. Zhen, Economic dispatch of off-grid photovoltaic generation system with hybrid energy storage, in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) (2018), pp. 1–6

    Google Scholar 

  8. C. Rooks, X. Kou, F. Li, Interval optimization for robust economic dispatch in active distribution networks considering uncertainty, in International Conference on Smart Energy Systems and Technologies (SEST) (2019), pp. 1–6

    Google Scholar 

  9. C. Liu, X. Wang, X. Wu, Y. Zou, H. Zhang, L. Yao, Y. Zhang, Q. Cui, Economic dispatch for microgrid with electric vehicles in plug-in charging and battery swapping modes, in IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (2016), pp. 1158–1163

    Google Scholar 

  10. Y. Peng, S. Gao, B. Xu, Optimal dispatch and techno-economic evaluation of mixed ac and dc distribution networks with high penetration of photovoltaic panels, in IEEE Asia Power and Energy Engineering Conference (APEEC) (2019), pp. 258–262

    Google Scholar 

  11. J. Zhu, Q. Liu, X. Xiong, J. Ouyang, P. Xuan, P. Xie, J. Zou, Multi-time-scale robust economic dispatching method for the power system with clean energy. J. Eng. 2019(16), 1377–1381 (2019)

    Article  Google Scholar 

  12. N.A. Khan, G.A.S. Sidhu, F. Gao, Optimizing combined emission economic dispatch for solar integrated power systems. IEEE Access 4, 3340–3348 (2016)

    Google Scholar 

  13. A. Soroudi, A. Rabiee, A. Keane, Stochastic real-time scheduling of wind-thermal generation units in an electric utility. IEEE Syst. J. 11(3), 1622–1631 (2017)

    Article  Google Scholar 

  14. M. Abou Houran, W. Chen, M. Zhu, L. Dai, Economic dispatch of grid-connected microgrid for smart building considering the impact of air temperature. IEEE Access 7, 70332–70342 (2019)

    Google Scholar 

  15. Y. Ying, Y. Wu, Y. Su, R. Fu, X. Liang, H. Xu, Dispatching approach for active distribution network considering pv generation reliability and load predicting interval. J. Eng. 2017(13), 2433–2437 (2017)

    Article  Google Scholar 

  16. F. Conte, F. D’Agostino, P. Pongiglione, M. Saviozzi, F. Silvestro, Mixed-integer algorithm for optimal dispatch of integrated pv-storage systems. IEEE Trans. Ind. Appl. 55(1), 238–247 (2019)

    Article  Google Scholar 

  17. H. Wang, S. Wang, Q. Zhao, J. Wang, Bi-level optimisation dispatch method for photovoltaic hosting capacity enhancement of distribution buses. IET Gener. Transm. Distrib. 13(23), 5413–5422 (2019)

    Article  Google Scholar 

  18. Z. Zhao, K. Wang, G. Li, X. Jiang, X. Wang, Economic dispatch of distribution network with inn for electric vehicles and photovoltaic. J. Eng. 2019(16), 2864–2868 (2019)

    Article  Google Scholar 

  19. T. Masuta, T. Oozeki, J.G. da Silver Fonseca, A. Murata, Evaluation of economic-load dispatching control based on forecasted photovoltaic power output, in ISGT 2014 (2014), pp. 1–5

    Google Scholar 

  20. W.C. Flores, P. Meraz, J. Berrios, D. Melara, C. Barahona, W. Sifuentes, The solar eclipse of august 21, 2017 in honduras: Evidence of the impact on the power system operation, in 2018 IEEE PES Transmission Distribution Conference and Exhibition—Latin America (T D-LA) (2018), pp. 1–5

    Google Scholar 

  21. W.C. Flores, Analysis of regulatory framework of electric power market in Honduras: promising and essential changes 20(1), pp. 46–51. https://doi.org/10.1016/j.jup.2011.11.006, http://www.sciencedirect.com/science/article/pii/S0957178711000816

  22. W.C. Flores, Some issues related to the regulatory framework and organizational structure of the central american electricity market, in 2016 IEEE PES Transmission Distribution Conference and Exposition-Latin America (PES T D-LA) (2016), pp. 1–5

    Google Scholar 

  23. E.N.L. Canté, Despacho econÓmico de carga considerando restricciones en la red de transporte con el uso de tócnicas de programaciÓn lineal (2005), 143p

    Google Scholar 

  24. A.J. Wood, B.F. Wollenberg, G.B. Sheblé, Power Generation, Operation, and Control, 3rd edn. (Wiley-Interscience, 2013)

    Google Scholar 

  25. F.S. Hillier, G.J. Lieberman, Investigacion de Operaciones (McGraw-Hill Companies, 2002)

    Google Scholar 

  26. R.E. Gomory, Outline of an algorithm for integer solutions to linear programs 64(5), pp. 275–278. https://projecteuclid.org/euclid.bams/1183522679

  27. E.C. Ron, A.J.C. Navarro, P.P. Tercero, Formulación Y Resolución De Modelos De Programación Matemática En Ingeniería Y Ciencia, Universidad De Castilla-La Mancha

    Google Scholar 

  28. R. Rahmaniani, T.G. Crainic, M. Gendreau, W. Rei, The Benders decomposition algorithm: a literature review 259(3), pp. 801–817. https://doi.org/10.1016/j.ejor.2016.12.005, http://www.sciencedirect.com/science/article/pii/S0377221716310244

  29. M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd edn. (Wiley-Interscience, 2013)

    Google Scholar 

  30. D.P. Bertsekas, Nonlinear Programming, 3rd edn. (Athena Scientific, 1994)

    Google Scholar 

  31. D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, 4th edn. (Springer, 1984)

    Google Scholar 

  32. A. Soroudi, Power System Optimization Modeling in GAMS (Springer International Publishing, 2017) https://doi.org/10.1007/978-3-319-62350-4, https://www.springer.com/gp/book/9783319623498

  33. W.S. Sifuentes, A. Vargas, Hydrothermal scheduling using benders decomposition: accelerating techniques. IEEE Trans. Power Syst. 22(3), 1351–1359 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold R. Chamorro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meraz, P. et al. (2021). Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market. In: Singh, V.K., Bhoi, A.K., Saxena, A., Zobaa, A.F., Biswal, S. (eds) Renewable Energy and Future Power Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6753-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6753-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6752-4

  • Online ISBN: 978-981-33-6753-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics