Skip to main content

An Improved Cohort Intelligence with Panoptic Learning Behavior for Solving Constrained Problems

  • Chapter
  • First Online:
Constraint Handling in Metaheuristics and Applications

Abstract

In this paper, we present a new optimization algorithm referred to as Cohort Intelligence with Panoptic learning (CI-PL). This proposed algorithm is a modified version of Cohort Intelligence (CI), where Panoptic learning (PL) is incorporated into CI which makes every cohort candidate learn the most from the best candidate but at same time it does not completely ignore the other candidates. The PL is assisted with a new sampling interval reduction method based on the standard deviation between the behaviors of the cohort candidates. A variety of well-known set of unconstrained and constrained test problems have been successfully solved by using the proposed algorithm. The CI-PL approach produced competent and sufficiently robust results solving unconstrained, constrained, and engineering problems. The associated strengths, weaknesses, and possible real-world extensions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Changdar, C., Mahapatra, G.S., Kumar Pal, R.: An improved genetic algorithm based approach to solve constrained knapsack problem in fuzzy environment. Expert Syst. Appl. 42(4), 2276–2286 (2015)

    Article  Google Scholar 

  2. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Google Scholar 

  3. Li, X., Parrott, L.: An improved genetic algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 59, 184–194 (2016). ISSN 0198-9715

    Google Scholar 

  4. Ray, T., Tai, K., Seow, K.: Multiobjective design optimization by an evolutionary algorithm. Eng. Optim. 33(4), 399–424 (2001)

    Article  Google Scholar 

  5. Chen, Z., Xiong, R., Cao, J.: Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy 96(1), 197–208 (2016)

    Article  Google Scholar 

  6. Dorigo, M., Birattari, M., Stitzle, T.: Ant colony optimization: arificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 28–39 (2006)

    Google Scholar 

  7. Wu, W., Tian, Y., Jin, T.: A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul. Appl. Soft Comput. 47, 224–234 (2016)

    Article  Google Scholar 

  8. Kavousi-Fard, A., Niknam, T., Fotuhi-Firuzabad, M.: A novel stochastic framework based on cloud theory and modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Trans. Smart Grid 7(2), 740–750 (2016)

    Google Scholar 

  9. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK (2005)

    Google Scholar 

  10. Kulkarni, A., Durugkar, I., Kumar, M.: Cohort intelligence: a self-supervised learning behavior. In: Proceedings of the IEEE Conference on Systems, Man and Cybernetics, pp. 1396–1400 (2013)

    Google Scholar 

  11. Krishnasamy, G., Kulkarni, A., Paramesran, R.: A hybrid approach for data clustering based on modified cohort intelligence and k-means. Expert Syst. Appl. 6009–6016 (2013)

    Google Scholar 

  12. Kulkarni, A.J., Shabir, H.: Solving 0-1 Knapsack problem using cohort intelligence algorithm. Int. J. Mach. Learn. Cybern. 7(3), 427–441 (2016)

    Google Scholar 

  13. Kulkarni, A.J., Krishnasamy, G., Abraham, A.: Cohort intelligence: a socio-inspired optimization method. In: Intelligent Systems Reference Library, vol. 114. Springer (2017). https://doi.org/10.1007/978-3-319-44254-9. (ISBN: 978-3-319-44254-9)

  14. Kulkarni, O., Kulkarni, N., Kulkarni, A.J., Kakandikar, G.: Constrained Cohort intelligence using static and dynamic penalty function approach for mechanical components design. Int. J. Parallel Emerg. Distrib. Syst. (In Press) (2016). https://doi.org/10.1080/17445760.2016.1242728)

    Article  Google Scholar 

  15. Dhavle, S.V., Kulkarni, A.J., Shastri, A., Kale, I.R.: Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Comput. Appl. (In Press) (2017)

    Google Scholar 

  16. Kale, I.R., Kulkarni, A.J.: Cohort intelligence algorithm for discrete and mixed variable engineering problems. Int. J. Parallel Emerg. Distrib. Syst. (In Press) (2017)

    Google Scholar 

  17. Patankar, N.S., Kulkarni, A.J.: Variations of cohort intelligence. Soft. Comput. 22(6), 1731–1747 (2018)

    Article  Google Scholar 

  18. Shastri, A.S., Kulkarni, A.J.: Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimisation methodology. Int. J. Parallel Emerg. Distrib. Syst. 33(6), 675–715 (2018)

    Article  Google Scholar 

  19. Sarmah, D., Kulkarni, A.J.: JPEG based steganography methods using cohort intelligence with cognitive computing and modified multi random start local search optimization algorithms. Inf. Sci. 430–431, 378–396 (2018)

    Article  Google Scholar 

  20. Sarmah, D., Kulkarni, A.J.: Image steganography capacity improvement using cohort intelligence and modified multi random start local search methods. Arab. J. Sci. Eng. (In Press) (2017)

    Google Scholar 

  21. Krishnasamy, G., Kulkarni, A.J., Raveendran, P.: A hybrid approach for data clustering based on modified cohort intelligence and K-means. Expert Syst. Appl. 6009–6016 (2014)

    Google Scholar 

  22. Kulkarni, A.J., Baki, M.F., Chaouch, B.A.: Application of the Cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur. J. Oper. Res. 250(2), 427–447 (2016)

    Google Scholar 

  23. Xu, W., Geng, Z., Zhu, Q., Gu, X.: A piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimization. Inf. Sci. 85–102 (2013)

    Google Scholar 

  24. Schittkowski, K.: NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 485–500 (1985)

    Google Scholar 

  25. Liu, L., Zhong, W., Qian, F.: An improved chaos-particle swarm optimization algorithm. J. East China Univ. Sci. Technol. (Natl. Sci. Ed.) 267–272 (2010)

    Google Scholar 

  26. Coello Coello, C.: Use of self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 113–127 (2000)

    Google Scholar 

  27. Farmani, R., Wright, J.: Self-adaptive fitness formulation for constrained optimization. EEE Trans. Evol. Comput. 445–455 (2003)

    Google Scholar 

  28. Lampinen, J.: A constraint handling approach for the differential evolution algorithm. IEEE Congr. Evol. Comput. 1468–1473 (2002)

    Google Scholar 

  29. He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 1407–1422 (2007)

    Google Scholar 

  30. Hu, X., Eberhart, R.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: 6th World Multi-Conference on Systemics, Cybernetics and Informatics (2002)

    Google Scholar 

  31. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mapping, and constrained parameter optimization. Evol. Comput. 19–44 (1999)

    Google Scholar 

  32. Coello Coello, C., Becerra, R.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 219–236 (2004)

    Google Scholar 

  33. Becerra, R., Coello Coello, C.: Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 4303–4322 (2006)

    Google Scholar 

  34. Chootinan, P., Chen, A.: Constraint handling in genetic algorithms using a gradient-based repair method. Comput. Oper. Res. 2263–2281 (2006)

    Google Scholar 

  35. Zahara, E., Hu, C.: Solving constrained optimization problems with hybrid particle swarm optimization. Eng. Optim. 1031–1049 (2008)

    Google Scholar 

  36. Montes, E., Lopez-Ramirez, B.: Comparing bio-inspired algorithms in constrained optimization problems. IEEE Congr. Evol. Comput. 662–669 (2007). Singapore

    Google Scholar 

  37. Montes, E., Varela, M., Caemen, R., Ramon, G.: Differential evolution in constrained numerical optimization: a empirical study. Inf. Sci. 4223–4262 (2010)

    Google Scholar 

  38. Deb, K.: GeneAS: a robust optimal design technique for mechanical component design. In: Dasgupta, D., Michalewicz, Z. (eds.) Evolutionary Algorithms in Engineering Applications, pp. 497–514. Springer (1997)

    Google Scholar 

  39. Kannan, B., Kramer, S.: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. ASME J. Mech. Des. 405–411 (1994)

    Google Scholar 

  40. Ragsdell, K., Phillips, D.: Optimal design of a class of welded structures using geometric programming. SME J. Eng. Ind. Ser. B 1021–1025 (1976)

    Google Scholar 

  41. Mohamed, A.W., Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012)

    Article  Google Scholar 

  42. Behrooz, G., Li, X., Ozlen, M.: Cooperative coevolutionary differential evolution with improved augmented Lagrangian to solve constrained optimisation problems. Inf. Sci. 369(C), 441–456 (2016)

    Google Scholar 

  43. Dong, Y., Tang, J., Xu, B., Wang, D.: An application of swarm optimization to nonlinear programming. Comput. Math. Appl. 1655–1668 (2005)

    Google Scholar 

  44. Hamida, S., Schoenauer, M.: ASCHEA: new results using adaptive segregational constraint handling. IEEE Congr. Evol. Comput. 884–889 (2002)

    Google Scholar 

  45. Hedar, A.R., Fukushima, M.: Derivative-free simulated annealing method for constrained continuous globale optimization. J. Glob. Optim. 521–549 (2006)

    Google Scholar 

  46. Runarsson, T., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 284–294 (2000)

    Google Scholar 

  47. Arora, J.: Introduction to Optimum Design. Elsevier Academic Press (2004)

    Google Scholar 

  48. Coello Coello, C., Montes, E.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inf. 193–203 (2002)

    Google Scholar 

  49. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 89–99 (2006)

    Google Scholar 

  50. Kulkarni, A., Tai, K.: Solving constrained optimization problems using probability collectives and a penalty function approach. Int. J. Comput. Intell. Appl. 10(4), 445–470 (2011)

    Article  Google Scholar 

  51. Siddall, J.: Analytical Design-Making in Engineering Design. Prentice-Hall (1972)

    Google Scholar 

  52. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design. In: ASME Design Technology Conference, pp. 95–105 (1988)

    Google Scholar 

  53. Vanderplaat, G.: Numerical Optimization Techniques for Engineering Design. Mcgraw-Hill (1984)

    Google Scholar 

  54. Metkar, S., Kulkarni, A.: Boundary searching genetic algorithm: a multi-objective approach for constrained problems. In: Satapathy, S., Biswal, B., Udgata, S. (ed.) In Advances in Intelligent and Soft Computing, pp. 269–276. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand J. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnasamy, G., Kulkarni, A.J., Shastri, A.S. (2021). An Improved Cohort Intelligence with Panoptic Learning Behavior for Solving Constrained Problems. In: Kulkarni, A.J., Mezura-Montes, E., Wang, Y., Gandomi, A.H., Krishnasamy, G. (eds) Constraint Handling in Metaheuristics and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-6710-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6710-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6709-8

  • Online ISBN: 978-981-33-6710-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics