Skip to main content

Electrolytes with Redox Mediators

  • Chapter
  • First Online:
Next Generation Batteries
  • 1203 Accesses

Abstract

Although lithium–air batteries are attractive because of their huge energy density, further improvements in cycle performance are required for practical use. The most serious problems are the increase in charging voltage at the cathode and the formation of Li dendrites at the anode during the charging process. Soluble-type catalysts or redox mediators (RMs) are known to be effective in lowering the charge voltage to the redox potential, although they cannot inhibit Li dendrite formation. We have recently shown that LiBr–LiNO3 mixed anion electrolytes can simultaneously alleviate both of these problems. LiBr effectively functions as an RM that lowers the charge voltage to ~3.5 V and suppresses side reactions. LiNO3 acts synergistically with LiBr to form a thin, dense, and uniform SEI film on the surface of Li metal. As a result, Li dendrite was effectively suppressed and even epitaxial growth of Li metal was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, C., Ito, K., Sakata, O., & Kubo, Y. (2018). Operando structural study of non-aqueous Li–air batteries using synchrotron-based X-ray diffraction. RSC Advances, 8, 26293–26299.

    Google Scholar 

  2. McCloskey, B. D., Scheffler, R., Speidel, A., Girishkumar, G., & Luntz, A. C. (2012). On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: Some implications for Li–air batteries. Journal of Physical Chemistry C, 116, 23897–23905.

    Google Scholar 

  3. McCloskey, B. D., Bethune, D. S., Shelby, R. M., Mori, T., Scheffler, R., Speidel, A., et al. (2012). Limitations in rechargeability of Li-O2 batteries and possible origins. The Journal of Physical Chemistry Letters, 3, 3043–3047.

    Google Scholar 

  4. McCloskey, B. D., Valery, A., Luntz, A. C., Gowda, S. R., Wallraff, G. M., Garcia, J. M., et al. (2013). Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. The Journal of Physical Chemistry Letters, 4, 2989–2993.

    Google Scholar 

  5. Tsiouvaras, N., Meini, S., Buchberger, I., & Gasteiger, H. A. (2013). A novel On-line mass spectrometer design for the study of multiple charging cycles of a Li-O2 battery. Journal of the Electrochemical Society, 160, A471–A477.

    Google Scholar 

  6. Beyer, H., Meini, S., Tsiouvaras, N., Piana, M., & Gasteiger, H. A. (2013). Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries. Physical Chemistry Chemical Physics: PCCP, 15, 11025–11037.

    Google Scholar 

  7. McCloskey, B. D., Speidel, A., Scheffler, R., Miller, D. C., Viswanathan, V., Hummelshøj, J. S., et al. (2012). Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. The Journal of Physical Chemistry Letters, 3, 997–1001.

    Google Scholar 

  8. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., & Bruce, P. G. (2012). The carbon electrode in nonaqueous Li–O2 cells. Journal of the American Chemical Society, 135, 494–500.

    Google Scholar 

  9. Hassoun, J., Croce, F., Armand, M., & Scrosati, B. (2011). Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angewandte Chemie International Edition, 50, 2999–3002.

    Google Scholar 

  10. Wandt, J., Jakes, P., Granwehr, J., Gasteiger, H. A., & Eichel, R. A. (2016). Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angewandte Chemie International Edition, 55, 6892–6895.

    Google Scholar 

  11. Mahne, N., Schafzahl, B., Leypold, C., Leypold, M., Grumm, S., Leitgeb, A., et al. (2017). Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nature Energy, 2, 17036.

    Google Scholar 

  12. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O., & Bruce, P. G. (2013). Charging a Li–O2 battery using a redox mediator. Nature Chemistry, 5, 489–494.

    Google Scholar 

  13. Park, J. B., Lee, S. H., Jung, H. G., Aurbach, D., & Sun, Y. K. (2018). Redox mediators for Li–O2 batteries: Status and perspectives. Advanced Materials, 30, 1704162.

    Google Scholar 

  14. Kwak, W. J., Kim, H., Jung, H. G., Aurbach, D., & Sun, Y. K. (2018). Review—A comparative evaluation of redox mediators for Li-O2 batteries: A critical review. Journal of the Electrochemical Society, 165, A2274–A2293.

    Google Scholar 

  15. Liang, Z., & Lu, Y.-C. (2016). Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. Journal of the American Chemical Society, 138, 7574–7583.

    Google Scholar 

  16. Xin, X., Ito, K., & Kubo, Y. (2017). Highly efficient Br/NO3 dual-anion electrolyte for suppressing charging instabilities of Li−O2 batteries. ACS Applied Materials & Interfaces, 9, 25976–25984.

    Google Scholar 

  17. Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C. S., & Affinito, J. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of the Electrochemical Society, 156, A694–A702.

    Google Scholar 

  18. Uddin, J., Bryantsev, V. S., Giordani, V., Walker, W., Chase, G. V., & Addison, D. (2013). Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li/O2 batteries. The Journal of Physical Chemistry Letters, 4, 3760–3765.

    Google Scholar 

  19. Xin, X., Ito, K., Dutta, A., & Kubo, Y. (2018). Dendrite-free epitaxial growth of lithium metal during charging in Li–O2 batteries. Angewandte Chemie International Edition, 57, 13206–13210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Kubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubo, Y. (2021). Electrolytes with Redox Mediators. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics