Skip to main content

Concentrated Electrolytes for Lithium Metal Negative Electrodes

  • Chapter
  • First Online:
Next Generation Batteries
  • 1188 Accesses

Abstract

Lithium metal is one of the most promising negative electrodes for high-energy-density rechargeable batteries, but its critical problem is low Coulombic efficiency resulting from the reductive decomposition of an electrolyte thereon, which has hampered its commercial applications. Various electrolytes and additives have been proposed to form a stable interphase between Li metal and electrolyte. Among them, salt-concentrated electrolytes have been most extensively studied, which create a unique anion-derived interphase that can highly stabilize the Li metal/electrolyte interface. The optimization of the salt–solvent combinations as well as the salt concentration enables us to achieve high Coulombic efficiency of over 99%. Herein the unique interphasial properties of concentrated electrolytes, as well as other beneficial interfacial/bulk properties such as extended potential windows, prevented metal corrosion, accelerated electrode reactions, increased transference number and decreased volatility/flammability, are discussed with a focus on their peculiar coordination structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamada, Y., Takazawa, Y., Miyazaki, K., & Abe, T. (2010). Journal of Physical Chemistry C, 114, 11680.

    Google Scholar 

  2. Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., et al. (2014). Journal of the American Chemical Society, 136, 5039.

    Article  Google Scholar 

  3. Yoshida, K., Nakamura, M., Kazue, Y., Tachikawa, N., Tsuzuki, S., Seki, S., et al. (2011). Journal of the American Chemical Society, 133, 13121.

    Article  Google Scholar 

  4. Matsumoto, K., Inoue, K., Nakahara, K., Yuge, R., Noguchi, T., & Utsugi, K. (2013). Journal of Power Sources, 231, 234.

    Article  Google Scholar 

  5. McOwen, D. W., Seo, D. M., Borodin, O., Vatamanu, J., Boyle, P. D., & Henderson, W. A. (2014). Energy & Environmental Science, 7, 416.

    Article  Google Scholar 

  6. Yamada, Y., Yaegashi, M., Abe, T., & Yamada, A. (2013). Chemical Communications, 49, 11194.

    Article  Google Scholar 

  7. Suo, L., Hu, Y.-S., Li, H., Armand, M., & Chen, L. (2013). Nature Communications, 4, 1481.

    Google Scholar 

  8. Wang, J., Yamada, Y., Sodeyama, K., Chiang, C. H. C. H., Tateyama, Y., & Yamada, A. (2016). Nature Communications, 7, 12032.

    Google Scholar 

  9. Jeong, S. K., Inaba, M., Iriyama, Y., Abe, T., & Ogumi, Z. (2003). Electrochemical and Solid-State Letters, 6, A13.

    Google Scholar 

  10. Jeong, S. K., Seo, H. Y., Kim, D. H., Han, H. K., Kim, J. G., Lee, Y. B., et al. (2008). Electrochemistry Communications, 10, 635.

    Article  Google Scholar 

  11. Togasaki, N., Momma, T., & Osaka, T. (2016). Journal of Power Sources, 307, 98.

    Article  Google Scholar 

  12. Liu, B., Xu, W., Yan, P., Kim, S. T., Engelhard, M. H., Sun, X., et al. (2017). Advanced Energy Matericals, 7, 1602605.

    Google Scholar 

  13. Qian, J., Henderson, W. A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., et al. (2015). Nature Communications, 6, 6362.

    Google Scholar 

  14. Liu, P., Ma, Q., Fang, Z., Ma, J., Hu, Y. S., Bin, Z., et al. (2016). Chinese Physics B, 25, 7.

    Google Scholar 

  15. Fan, X., Chen, L., Ji, X., Deng, T., Hou, S., Chen, J., et al. (2018). Chem, 4, 174.

    Article  Google Scholar 

  16. Alvarado, J., Schroeder, M. A., Zhang, M., Borodin, O., Gobrogge, E., Olguin, M., et al. (2018). Materials Today, 21, 341.

    Article  Google Scholar 

  17. Maeyoshi, Y., Ding, D., Kubota, M., Ueda, H., Abe, K., Kanamura, K., et al. (2019). ACS Applied Materials & Interfaces, 11, 25833.

    Google Scholar 

  18. Suo, L., Xue, W., Gobet, M., Greenbaum, S. G., Wang, C., Chen, Y., et al. (2018). Proceedings of National Academy of Sciences, 115, 1156.

    Article  Google Scholar 

  19. Yamada, Y., Wang, J., Ko, S., Watanabe, E., & Yamada, A. (2019). Nature Energy, 4, 269.

    Google Scholar 

  20. Dokko, K., Tachikawa, N., Yamauchi, K., Tsuchiya, M., Yamazaki, A., Takashima, E., et al. (2013). Journal of the Electrochemical Society, 160, A1304.

    Article  Google Scholar 

  21. Chen, S., Zheng, J., Mei, D., Han, K. S., Engelhard, M. H., Zhao, W., et al. (2018). Advanced Materials, 30, 1706102.

    Google Scholar 

  22. Ren, X., Chen, S., Lee, H., Mei, D., Engelhard, M. H., Burton, S. D., et al. (2018). Chem, 4, 1877.

    Google Scholar 

  23. Chen, S., Zheng, J., Yu, L., Ren, X., Engelhard, M. H., Niu, C., et al. (2018). Joule, 2, 1548.

    Article  Google Scholar 

  24. Sodeyama, K., Yamada, Y., Aikawa, K., Yamada, A., & Tateyama, Y. (2014). Journal of Physical Chemistry C, 118, 14091.

    Google Scholar 

  25. Wang, J., Yamada, Y., Sodeyama, K., Watanabe, E., Takada, K., Tateyama, Y., et al. (2018). Nature Energy, 3, 22.

    Google Scholar 

  26. Ueno, K., Murai, J., Ikeda, K., Tsuzuki, S., Tsuchiya, M., Tatara, R., et al. (2016). Journal of Physical Chemistry C, 120, 15792.

    Google Scholar 

  27. Takada, K., Yamada, Y., & Yamada, A. (2019). ACS Applied Materials & Interfaces, 11, 35770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, Y. (2021). Concentrated Electrolytes for Lithium Metal Negative Electrodes. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics