Skip to main content

Rechargeable Lithium Metal Battery

  • Chapter
  • First Online:
Next Generation Batteries

Abstract

Li metal anode is now an extremely important anode material for next-generation batteries, such as Li-air, Li-sulfur and Li metal battery. Li metal is necessary to realize higher energy density of these batteries. However, the electrochemical performance of Li metal anode is very low, especially very low cycleability and safety. These problems are related to the lithium metal dendrite formation. In this section, the research history of Li metal anode is reviewed. The surface of Li metal is always covered by some surface layer, which strongly influences the electrochemical behavior of Li metal. The surface state analysis on Li metal has been carried out by using various surface analyses. Recently, the surface modification and creation of artificial layers on Li metal have been reported to improve the cycleability of Li metal anode with a suppression of Li metal dendrite formation. The solid electrolyte is also one possible material to avoid the dendrite formation. In order to realize Li metal anode with high cycleability and safety, various kinds of researches and concepts for the interface between Li metal anode electrolyte (separator).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yabuuchi, N., & Ohzuku, T. (2003). Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 119–121, 171–174.

    Article  Google Scholar 

  2. Chen, C. H., Liu, J., Stoll, M. E., Henriksen, G., Vissers, D. R., & Amine, K. (2004). Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. Journal of Power Sources, 128, 278–285.

    Article  Google Scholar 

  3. Shen, X., Tian, Z., Fan, R., Shao, L., Zhang, D., Cao, G., et al. (2018). Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 27, 1067–1090.

    Article  Google Scholar 

  4. Miao, Y., Hynan, P., Jouanne, A. V., & Yokochi, A. (2019). Current Li-Ion battery technologies in electric vehicles and opportunities for advancements. Energies, 12, 1074.

    Article  Google Scholar 

  5. Shimizu, Y., & Kanamura, K. (2019). Effect of pore size in three dimensionally ordered macroporous polyimide separator on lithium deposition/dissolution behavior. Journal of the Electrochemical Society, 166, A754–A761.

    Article  Google Scholar 

  6. Paled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 126, 2047–2051.

    Article  Google Scholar 

  7. Aurbach, D., Weissman, I., Schechter, A., & Cohen, H. (1996). X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by fourier transform infrared spectroscopy. Langmuir, 12, 3991–4007.

    Article  Google Scholar 

  8. Kanamura, K., Tamura, H., Shiraishi, S., & Takehara, Z. (1995). XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. Journal of the Electrochemical Society, 142, 340–347.

    Article  Google Scholar 

  9. Kanamura, K., Shiraishi, S., & Takehara, Z. (1996). Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. Journal of the Electrochemical Society, 143, 2187–2197.

    Article  Google Scholar 

  10. Shiraishi, S., Kanamura, K., & Takehara, Z. (1995). Effect of surface modification using various acids on electrodeposition of lithium. Journal of Appled Electrochemistry, 25, 584–591.

    Article  Google Scholar 

  11. Shiraishi, S., Kanamura, K., & Takehara, Z.-I. (1999). Influence of initial surface condition of lithium metal anodes on surface modification with HF. Journal of Appled Electrochemistry, 29, 867–879.

    Article  Google Scholar 

  12. Shiraishi, S., Kanamura, K., & Takehara, Z. (1999). Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles. Journal of the Electrochemical Society, 146, 1633–1639.

    Article  Google Scholar 

  13. Matsuda, S., Nishioka, K., & Nakanishi, S. (2019). High-throughput combinatorial screening of multi-component electrolyte additives to improve the performance of Li metal secondary batteries. Sci Rep., 9, 6211.

    Article  Google Scholar 

  14. Miao, R., Yang, J., Feng, X., Jia, H., Wang, J., & Nuli, Y. (2014). Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 271, 291–297.

    Article  Google Scholar 

  15. Besenhard, J. O., Wagner, M. W., Winter, M., Jannakoudakis, A. D., Jannakoudakis, P. D., & Theodoridou, E. (1993). Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes. Journal of Power Sources, 44, 413–420.

    Article  Google Scholar 

  16. Li, Y., Sun, Y., Pei, A., Chen, K., Vailionis, A., Li, Y., et al. (2018). Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium. ACS Cent Sci, 4, 97–104.

    Article  Google Scholar 

  17. Kozen, A. C., Lin, C.-F., Zhao, O., Lee, S. B., Rubloff, G. W., & Noked, M. (2017). Stabilization of lithium metal anodes by hybrid Artificial solid electrolyte interphase. Chemistry of Materials, 29, 6298–6307. https://doi.org/10.1021/acs.chemmater.7b01496.

    Article  Google Scholar 

  18. Nie, M., & Lucht, B. L. (2014). Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. Journal of the Electrochemical Society, 161, A1001–A1006.

    Article  Google Scholar 

  19. Wang, J., Yamada, Y., Sodeyama, K., Chiang, C. H., Tateyama, Y., & Yamada, A. (2016). Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun., 7, 12032.

    Article  Google Scholar 

  20. Yoshida, K., Nakamura, M., Kazue, Y., Tachikawa, N., Tsuzuki, S., Seki, S., et al. (2011). Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. Journal of the American Chemical Society, 133, 13121–13129.

    Article  Google Scholar 

  21. Jian, Z., Liu, P., Li, F., He, P., Guo, X., Chen, M., et al. (2014). Core–shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 Batteries. Angewandte Chemie Int Ed, 53, 442–446.

    Article  Google Scholar 

  22. Ogasawara, T., Débart, A., Holzapfel, M., Novák, P., & Bruce, P. G. (2006). Rechargeable Li2O2 Electrode for Lithium Batteries. Journal of the American Chemical Society, 128, 1390–1393.

    Article  Google Scholar 

  23. Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S., & Iba, H. (2010). Rechargeable Li-Air batteries with carbonate-based liquid electrolytes. Electrochemistry, 78, 403–405.

    Article  Google Scholar 

  24. Yamada, Y., & Yamada, A. (2015). Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 162, A2406–A2423.

    Article  Google Scholar 

  25. R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, J.-Q. Huang, Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal AnodeAdv. Funct. Mater., 28 (2018)no.1705838.

    Google Scholar 

  26. Khurana, R., Schaefer, J. L., Archer, L. A., & Coates, G. W. (2014). Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society, 136, 7395–7402.

    Article  Google Scholar 

  27. Abraham, K. M., & Alamgir, M. (1990). Li + -conductive solid polymer electrolytes with liquid-like conductivity. Journal of the Electrochemical Society, 137, 1657–1658.

    Article  Google Scholar 

  28. Kubota, K., & Matsumoto, H. (2014). Cation mixtures of alkali metal (Fluorosulfonyl)(trifluoromethylsulfonyl)amide as electrolytes for lithium secondary battery. Journal of the Electrochemical Society, 161, A902–A907.

    Article  Google Scholar 

  29. Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194–206.

    Article  Google Scholar 

  30. Jiao, S., Zheng, J., Li, Q., Li, X., Engelhard, M. H., Cao, R., et al. (2018). Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule., 2, 110–124.

    Article  Google Scholar 

  31. Yun, Q., He, Y.-B., Lv, W., Zhao, Y., Li, B., Kang, F., et al. (2016). Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28, 6932–6939.

    Article  Google Scholar 

  32. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W., & Guo, Y.-G. (2015). Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun, 6, 8058.

    Article  Google Scholar 

  33. Zuo, T.-T., Wu, X.-W., Yang, C.-P., Yin, Y.-X., Ye, H., Li, N.-W., et al. (2017). Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials, 29, 1700389.

    Article  Google Scholar 

  34. Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J., & Sakamoto, J. (2016). Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. Journal of Power Sources, 302, 135–139.

    Article  Google Scholar 

  35. Li, Q., Yi, T., Wang, X., Pan, H., Quan, B., Liang, T., et al. (2019). In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 63, 103895.

    Article  Google Scholar 

  36. Lou, J., Wang, G., Xia, Y., Liang, C., Huang, H., Gan, Y., et al. (2020). Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. Journal of Power Sources, 448, 227440.

    Google Scholar 

  37. Duan, H., Zheng, H., Zhou, Y., Xu, B., & Liu, H. (2018). Stability of garnet-type Li ion conductors: An overview. Sol St Ion, 318, 45–53.

    Article  Google Scholar 

  38. Wakasugi, J., Munakata, H., & Kanamura, K. (2017). Effect of gold layer on interface resistance between lithium metal anode and Li6.25Al0.25La3Zr2O12 solid electrolyte. Journal of the Electrochemical Society, 164, A1022–A1025.

    Article  Google Scholar 

  39. Nagao, M., Hayashi, A., & Tatsumisago, M. (2012). Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry, 80, 734–736.

    Article  Google Scholar 

  40. Kato, A., Suyama, M., Hotehama, C., Kowada, H., Sakuda, A., Hayashi, A., et al. (2018). High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films. Journal of the Electrochemical Society, 165, A1950–A1954.

    Article  Google Scholar 

  41. Arora, P., & Zhang, Z. J. (2004). Battery separators. Chemical Reviews, 104, 4419–4462.

    Article  Google Scholar 

  42. Pan, R., Wang, Z., Sun, R., Lindh, J., Edström, K., Strømme, M., et al. (2017). Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose, 24, 2903–2911.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanamura, K., Nakabayashi, Y. (2021). Rechargeable Lithium Metal Battery. In: Kanamura, K. (eds) Next Generation Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-33-6668-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6668-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6667-1

  • Online ISBN: 978-981-33-6668-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics