Skip to main content

Wavelet-Based Solutions for Linear Boundary-Value Problems

  • Chapter
  • First Online:
Wavelet Numerical Method and Its Applications in Nonlinear Problems

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 6))

Abstract

The Galerkin method is one of the most popular weighted residual methods, as whose performance shows a good balance among accuracy, computation, and stability [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fletcher CAJ (1984) Computational Galerkin methods. Springer, New York

    Book  MATH  Google Scholar 

  2. Latto A, Tenenbaum E (1990) Compactly supported wavelets and the numerical solution of Burgers’ equation. Comptes Rendus de Académie des Sci—Ser I—Math 311(13):903–909

    Google Scholar 

  3. Amaratunga K, Williams JR (1993) Wavelet based green’s function approach to 2D PDEs. Eng Comput 10(4):349–367

    Article  Google Scholar 

  4. Xu JC, Shann WC (1992) Galerkin-wavelet methods for two-point boundary value problems. Numer Math 63(1):123–144

    Article  MathSciNet  MATH  Google Scholar 

  5. Qian S, Weiss J (1993) Wavelets and the numerical solution of partial differential equations. J Comput Phys 106(1):155–175

    Article  MathSciNet  MATH  Google Scholar 

  6. Lu D, Ohyoshi T, Miura K (1997) Treatment of boundary conditions in one-dimensional wavelet-Galerkin method. JSME Int J Ser A Solid Mech Mater Eng 40(4):382–388

    Article  Google Scholar 

  7. Díaz AR (1999) A wavelet–Galerkin scheme for analysis of large-scale problems on simple domains. Int J Numer Meth Eng 44(11):1599–1616

    Article  MathSciNet  MATH  Google Scholar 

  8. Nakagoshi S, Noguchi H (2001) A modified wavelet Galerkin method for analysis of Mindlin plates. JSME Int J Ser A Solid Mech Mater Eng 44(4):610–615

    Article  Google Scholar 

  9. Wang JZ (2001) Generalized theory and arithmetic of orthogonal wavelets and applications to researches of mechanics including piezoelectric smart structures. PhD dissertation. Gansu: Lanzhou University (in Chinese)

    Google Scholar 

  10. Wang JZ, Wang XM, Zhou YH (2010) Numerical solutions to differential equations with strong nonlinearities based on series expansion of orthogonal scaling functions. J Lanzhou Univ (Natural Sciences) 46(5):96–101 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  11. Chen MQ, Hwang C, Shih YP (1996) The computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Meth Eng 39:2921–2924

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang T, Tian YC, Tadé MO, Utomo J (2007) Comments on ‘the computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Meth Eng 72(2):244–251

    Article  MATH  Google Scholar 

  13. Zhou YH, Wang JZ, Zheng XJ (1998) Applications of wavelet Galerkin FEM to bending of beam and plate structures. Appl Math Mech (English Edition) 19(8):745–755

    Article  MATH  Google Scholar 

  14. Regińska T, Lars E (1997) Solving the sideways heat equation by a wavelet-Galerkin method. Inverse Prob 13(4):1093

    Article  MathSciNet  MATH  Google Scholar 

  15. Regińska T, Eldén L (2000) Stability and convergence of the wavelet-Galerkin method for the sideways heat equation. J Inverse Ill-posed Prob 8(1):31–49

    MathSciNet  MATH  Google Scholar 

  16. Kim YY, Jang GW (2002) Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis. Int J Numer Meth Eng 53(7):1575–1592

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim JE, Jang GW, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473–6496

    Article  MATH  Google Scholar 

  18. Al-Qassab M, Nair S (2004) Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass. J Sound Vib 270(1–2):191–206

    Article  MATH  Google Scholar 

  19. Liu XJ (2014) A wavelet method for uniformly solving nonlinear problems and its application to quantitative research on flexible structures with large deformation. PhD dissertation. Gansu: Lanzhou University. 2014 (in Chinese)

    Google Scholar 

  20. Wang X M (2012) Closed solution to nonlinear problem of beams/plates based on wavelet. PhD dissertation. Gansu: Lanzhou University (in Chinese)

    Google Scholar 

  21. Zhang L (2016) High-precision wavelet numerical methods and applications to nonlinear structural analysis. PhD dissertation. Gansu: Lanzhou University (in Chinese)

    Google Scholar 

  22. Zhou J, Zhou YH, Liew KM (2011) Wavelet-based method for stability analysis of vibration control systems with multiple delays. Comput Mech 47(2):161–170

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang L, Wang JZ, Zhou YH (2014) Wavelet method applied to specific adhesion of elastic solids via molecular bonds. Theor Appl Mech Lett 4(4):041009

    Article  Google Scholar 

  24. Liu XJ, Wang JZ, Zhou YH (2011) A modified wavelet-Galerkin method for computation in structural mechanics with strong nonlinearity. Chin J Solid Mech 32(3):249–257 (in Chinese)

    Google Scholar 

  25. Liu XJ, Wang JZ, Zhou YH (2013) A wavelet method for studying large deflection bending problems of flexible beams. Chin J Solid Mech 33(S1):159–165 (in Chinese)

    Google Scholar 

  26. Wang XM, Liu XJ, Wang JZ, Zhou YH (2015) A wavelet method for bending of circular plate with large deflection. Acta Mech Solida Sin 28(1):83–90

    Article  Google Scholar 

  27. Zhang L, Wang JZ, Zhou YH (2015) Wavelet solution for large deflection bending problems of thin rectangular plates. Arch Appl Mech 85(3):355–365

    Article  MATH  Google Scholar 

  28. Zhang L, Wang JZ, Zhou YH (2016) Large deflection and post-buckling analysis of non-linearly elastic rods by wavelet method. Int J Non-Linear Mech 78:45–52

    Article  Google Scholar 

  29. Wang JZ, Wang XM, Zhou YH (2012) A wavelet approach for active-passive vibration control of laminated plates. Acta Mech Sin 28(2):520–531

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang Z, Liao S (2017) A HAM-based wavelet approach for nonlinear ordinary differential equations. Commun Nonlinear Sci Numer Simul 48:439–453

    Article  MathSciNet  MATH  Google Scholar 

  31. Fenik S, Starek L (2010) Optimal PI controller with position feedback for vibration suppression. J Vib Control 16(13):2023–2034

    Article  MathSciNet  MATH  Google Scholar 

  32. Si HW, Li DX (2003) Researches on wavelet-based vibration control of large space smart structures. J Nat Univ Defense Technol 25(3):14–18 (in Chinese)

    Google Scholar 

  33. Koziol P, Hryniewicz Z (2006) Analysis of bending waves in beam on viscoelastic random foundation using wavelet technique. Int J Solids Struct 43(22–23):6965–6977

    Article  MATH  Google Scholar 

  34. Koziol P, Mares C, Esat I (2008) Wavelet approach to vibratory analysis of surface due to a load moving in the layer. Int J Solids Struct 45(7–8):2140–2159

    Article  MATH  Google Scholar 

  35. Hryniewicz Z (2011) Dynamics of rayleigh beam on nonlinear foundation due to moving load using adomian decomposition and coiflet expansion. Soil Dyn Earthquake Eng 31(8):1123–1131

    Article  Google Scholar 

  36. Tanaka S, Okada H, Okazawa S (2012) A wavelet Galerkin method employing B-spline bases for solid mechanics problems without the use of a fictitious domain. Comput Mech 50(1):35–48

    Article  MathSciNet  MATH  Google Scholar 

  37. Sannomaru S, Tanaka S, Yoshida K-i, Bui T Q, Okazawa S, Hagihara S (2017) Treatment of Dirichlet-type boundary conditions in the spline-based wavelet Galerkin method employing multiple point constraints. Appl Math Model 43:592–610

    Google Scholar 

  38. Tanaka S, Sannomaru S, Imachi M, Hagihara S, Okazawa S, Okada H (2015) Analysis of dynamic stress concentration problems employing spline-based wavelet Galerkin method. Eng Anal Bound Elem 58:129–139

    Article  MathSciNet  MATH  Google Scholar 

  39. Tanaka S, Okada H, Okazawa S, Fujikubo M (2013) Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. Int J Numer Meth Eng 93(10):1082–1108

    Article  MathSciNet  MATH  Google Scholar 

  40. Tanaka S, Suzuki H, Ueda S, Sannomaru S (2015) An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech 226(7):2159–2175

    Article  MathSciNet  MATH  Google Scholar 

  41. Dahmen W, Kunoth A, Urban K (1996) A wavelet Galerkin method for the stokes equations. Computing 56(3):259–301

    Article  MathSciNet  MATH  Google Scholar 

  42. Rathish Kumar BV, Mehra M (2005) Wavelet-taylor Galerkin method for the Burgers equation. BIT Numer Math 45(3):543–560

    Article  MathSciNet  MATH  Google Scholar 

  43. Mehra M, Kumar V (2007) Fast wavelet-taylor Galerkin method for linear and non-linear wave problems. Appl Math Comput 189(2):1292–1299

    MathSciNet  MATH  Google Scholar 

  44. Mittal RC, Kumar S (2010) A numerical study of stationary solution of viscous Burgers’ equation using wavelet. Int J Comput Math 87(6):1326–1337

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou YH, Wang JZ, Zheng XJ (1998) Applications of wavelet Galerkin FEM to bending of beam and plate structures. Appl Math Mech 19(8):697–706 (in Chinese)

    MATH  Google Scholar 

  46. Zhou YH, Wang JZ (1999) Generalized Gaussian integral method for calculations of scaling function transform of wavelets and its applications. Acta Mathematica Scientia 19(3):293–300 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  47. Liu XJ, Zhou YH, Wang XM, Wang JZ (2013) A wavelet method for solving a class of nonlinear boundary value problems. Commun Nonlinear Sci Numer Simul 18:1939–1948

    Article  MathSciNet  MATH  Google Scholar 

  48. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  49. Barad M, Colella P (2005) A fourth-order accurate local refinement method for Poisson’s equation. J Comput Phys 209(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  50. Gibou F, Fedkiw RP, Cheng LT, Kang M (2002) A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J Comput Phys 176(1):205–227

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21(3):223–235

    Article  MathSciNet  MATH  Google Scholar 

  52. Meyer Y (1992) Wavelets and operators. Cambridge University Press

    Google Scholar 

  53. Liu XJ, Zhou YH, Zhang L, Wang JZ (2014) Wavelet solutions of Burgers’ equation with high Reynolds numbers. Sci China: Technol Sci 57(7):1285–1292

    Article  Google Scholar 

  54. Zhang J (1998) Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J Comput Phys 143(2):449–461

    Article  MathSciNet  MATH  Google Scholar 

  55. Shi Z, Cao Y, Chen Q (2012) Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl Math Model 36(11):5143–5161

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-He Zhou .

Appendix 5.1 Calculation of Connection Coefficients of Modified Basis Function

Appendix 5.1 Calculation of Connection Coefficients of Modified Basis Function

According to the definition of the modified scaling basis given in Eq. (5.6), the generalized connection coefficients can be expressed as

$$\Upgamma_{k.l}^{n,m} = \int_{0}^{1} {\frac{{d^{m} \phi_{n,k} (x)}}{{dx^{m} }}\phi_{n,l} (x)dx} = \left\{ {\begin{array}{*{20}l} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Upgamma }_{k.l}^{n,m} } \hfill & {{\text{for}}\;k \in \left[ {0,r - 1} \right],} \hfill \\ {\tilde{\Upgamma }_{k.l}^{n,m} } \hfill & {{\text{for}}\;k \in \left[ {r,2^{n} - r} \right],} \hfill \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Upgamma } 3_{k.l}^{n,m} } \hfill & {{\text{for}}\;k \in \left[ {2^{n} - r + 1,2^{n} } \right]} \hfill \\ \end{array} } \right.,$$
(5.43)

where

$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Upgamma }_{k.l}^{n,m} = \left\{ {\begin{array}{*{20}l} {\sum\limits_{{l_{1} = - 9}}^{ - 1} {\sum\limits_{{l_{2} = - 9}}^{ - 1} {u_{0,k} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)u_{0,l} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} } } \hfill \\ { + \sum\limits_{{l_{1} = - 9}}^{ - 1} {u_{0,k} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \sum\limits_{{l_{2} = - 9}}^{ - 1} {u_{0,l} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} ,\;\;{\text{for}}\;l \in \left[ {0,r - 1} \right],} \hfill \\ {\sum\limits_{{l_{1} = - 9}}^{ - 1} {u_{0,k} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} ,\quad \quad \quad \quad \quad \quad {\text{for}}\;l \in \left[ {r,2^{n} - r} \right] ,} \hfill \\ {\sum\limits_{{l_{1} = - 9}}^{ - 1} {\sum\limits_{{l_{2} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{0,k} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)u_{{1,2^{n} - l}} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} } } \hfill \\ { + \sum\limits_{{l_{1} = - 9}}^{ - 1} {u_{0,k} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \sum\limits_{{l_{2} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - l}} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} ,\;{\text{for}}\;l \in \left[ {2^{n} - r + 1,2^{n} } \right],} \hfill \\ \end{array} } \right.$$
(5.44)
$$\widetilde{\Upgamma }_{k.l}^{n,m} = \left\{ {\begin{array}{*{20}l} {\sum\limits_{{l_{2} = - 9}}^{ - 1} {u_{0,l} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} ,} \hfill & {{\text{for}}\;l \in \left[ {0,r - 1} \right],} \hfill \\ {\overline{\Upgamma }_{k - 7,l - 7}^{n,m} ,} \hfill & {{\text{for}}\;l \in \left[ {r,2^{n} - r} \right],} \hfill \\ {\sum\limits_{{l_{2} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - l}} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} ,} \hfill & {{\text{for}}\;l \in \left[ {2^{n} - r + 1,2^{n} } \right],} \hfill \\ \end{array} } \right.$$
(5.45)
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\Upgamma }_{k.l}^{n,m} = \left\{ {\begin{array}{*{20}l} {\sum\limits_{{l_{1} = 2^{n} + 1}}^{{2^{n} + 6}} {\sum\limits_{{l_{2} = - 9}}^{ - 1} {u_{{1,2^{n} - k}} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)u_{0,l} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} } } \hfill \\ { + \sum\limits_{{l_{1} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - k}} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \sum\limits_{{l_{2} = - 9}}^{ - 1} {u_{0,l} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} ,\;\;{\text{for}}\;l \in \left[ {0,r - 1} \right],} \hfill \\ {\sum\limits_{{l_{1} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - k}} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} ,\quad \quad \quad \quad \quad \quad \;{\text{for}}\;l \in \left[ {r,2^{n} - r} \right] ,} \hfill \\ {\sum\limits_{{l_{1} = 2^{n} + 1}}^{{2^{n} + 6}} {\sum\limits_{{l_{2} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - k}} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)u_{{1,2^{n} - l}} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l_{2} - 7}}^{n,m} + \overline{\Upgamma }_{k - 7,l - 7}^{n,m} } } \hfill \\ { + \sum\limits_{{l_{1} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - k}} \left( {\frac{{l_{1} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{l_{1} - 7,l - 7}}^{n,m} + \sum\limits_{{l_{2} = 2^{n} + 1}}^{{2^{n} + 6}} {u_{{1,2^{n} - l}} \left( {\frac{{l_{2} }}{{2^{n} }}} \right)} \overline{\Upgamma }_{{k - 7,l_{2} - 7}}^{n,m} ,\;{\text{for}}\;l \in \left[ {2^{n} - r + 1,2^{n} } \right].} \hfill \\ \end{array} } \right.$$
(5.46)

According to Eq. (5.43), the calculation of the generalized connection coefficients \(\Upgamma_{k,l}^{n,m}\) can be reduced to the calculation of the integral

$$\overline{\Upgamma }_{k,l}^{n,m} = \int_{0}^{1} {\frac{{d^{m} \varphi (2^{n} x - k)}}{{dx^{m} }}\varphi (2^{n} x - l)dx} .$$
(5.47)

Let \(y = 2^{n} x - l\), Eq. (5.47) can be transformed into

$$\overline{\Upgamma }_{k,l}^{n,m} = 2^{{n\left( {m - 1} \right)}} \int_{ - l}^{{2^{n} - l}} {\frac{{d^{m} \varphi (y - k + l)}}{{dy^{m} }}\varphi (y)dy} .$$
(5.48)

Then Eq. (5.47) can be further expressed as

$$\overline{\Upgamma }_{k,l}^{n,m} = 2^{{n\left( {m - 1} \right)}} [\Upgamma_{k - l}^{m} (2^{j} - l) - \Upgamma_{k - l}^{m} ( - l)].$$
(5.49)

Since the compact support of the scaling function is \(\left[ {0,\widetilde{N}} \right]\), the relationship can be obtained according to Sect. 2.5.3

$$\Upgamma_{k}^{m} (x) = 0,\quad \left| k \right| \ge \widetilde{N}\left\| {x \le 0} \right\|\;x \le k,$$
(5.50)
$$\Upgamma_{k}^{m} (x) = \overline{\Upgamma }_{k}^{m} = \int_{ - \infty }^{ + \infty } {\frac{{d^{m} \varphi (x - k)}}{{dx^{m} }}\varphi (x)dx} ,\quad x \ge \widetilde{N},$$
(5.51)
$$\overline{\Upgamma }_{k}^{m} = 0,\quad \left| k \right| \ge \widetilde{N}.$$
(5.52)

It can be seen from Eqs. (5.50) to (5.52) that the integral \(\Upgamma_{k}^{m} (x)\) needs to be calculated separately. The detailed calculation process of these integrals can be found in Sect. 2.5.3.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, YH. (2021). Wavelet-Based Solutions for Linear Boundary-Value Problems. In: Wavelet Numerical Method and Its Applications in Nonlinear Problems. Engineering Applications of Computational Methods, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-33-6643-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6643-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6642-8

  • Online ISBN: 978-981-33-6643-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics