Skip to main content

Brief Introduction in Applications of Other Groups

  • Chapter
  • First Online:
Wavelet Numerical Method and Its Applications in Nonlinear Problems

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 6))

  • 565 Accesses

Abstract

rom previous Chaps. 2–11, the wavelet-based solution method and its applications are detail introduced to what were conducted by the author and his colleagues. In this chapter, we give a brief introduction of those applications done by else groups using the generalized Coiflets and relevant method proposed by the author’s group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poincaré H (1882) Sur les courbes definies par les equations differentielles. Journal De Mathématiques Pures Et Aplliquées 3(8):251–286

    MATH  Google Scholar 

  2. Leray J, Schauder J (1934) Topologie et équations fonctionnelles. Annales Scientifiques De l’École Normale Supérieure. 51:45–78

    Article  MathSciNet  MATH  Google Scholar 

  3. Lahaye E (1934) Une méthode de résolution d'une catégorie d'équations transcendantes. Comptes rendus des séances de l'Académie des sciences. Vie académique 197:1840–1842

    Google Scholar 

  4. Hilton PJ (1953) An introduction to homotopy theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Sen S (1983) Topology and geometry for physicists. Academic Press, Florida

    MATH  Google Scholar 

  6. Alexander JC, Yorke JA (1978) The homotopy continuation method: numerically implementable topological procedures. Trans Ameri Math Soc 242:271–284

    Article  MathSciNet  MATH  Google Scholar 

  7. Liao SJ (1992) A second-order approximate analytical solution of a simple pendulum by the process analysis method. J Appl Mech 59:970–975

    Article  MATH  Google Scholar 

  8. Liao SJ (2004) An analytic approximate approach for free oscillations of self-excited systems. Int J Non-Linear Mech 39(2):271–280

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang ZC, Liao SJ (2017) A HAM-based wavelet approach for nonlinear ordinary differential equations. Commun Nonlinear Sci Numer Simul 48:439–453

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang ZC, Liao SJ (2017) A HAM-based wavelet approach for nonlinear partial differential equations: two dimensional Bratu problem as an application. Commun Nonlinear Sci Numer Simul 53:249–262

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang JZ (2001) Generalized theory and arithmetic of orthogonal wavelets and applications to researches of mechanics including piezoelectric smart structures. Lanzhou University; 2001. PhD Thesis. (advised by Zhou Y H)

    Google Scholar 

  12. Wang JZ, Zhou YH, Gao HJ (2003) Computation of the Laplace inverse transform by application of the wavelet theory. Commun Numer Methods Eng 19(12):959–975

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang JZ, Wang XM, Zhou YH (2012) A wavelet approach for active-passive vibration control of laminated plates. Acta Mech Sin 28(2):520–531

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu XJ, Wang JZ, Zhou YH (2013) A wavelet method for solving nonlinear time-dependent partial differential equations. Computer Modeling in Engineering and Science. 94:225–238

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu XJ, Zhou YH, Zhang L, Wang JZ (2014) Wavelet solutions of Burgers’ equation with high Reynolds numbers. Sci China Technol Sci 57(7):1285–1292

    Article  Google Scholar 

  16. Kosloff D, Kessler D, Filho A, Tessmer E, Behle A, Strahilevitz R (1990) Solution of the equations of dynamic elasticity by a Chebychev spectral method. Geophysics 55(6):734–748

    Article  Google Scholar 

  17. Jaffard S (1992) Wavelet methods for fast resolution of elliptic problems. SIAM J Numerical Anal 29(4):965–986

    Article  MathSciNet  MATH  Google Scholar 

  18. Alpert B, Beylkin G, Coifman R, Rokhlin V (1993) Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J Scient Comput 14(1):159–184

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu JC, Shann WC (1992) Galerkin-wavelet methods for two-point boundary value problems. Numer Math 63(1):123–144

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu XJ (2014) A wavelet method for uniformly solving nonlinear problems and its application to quantitative research on flexible structures with large deformation. Lanzhou University; 2014. PhD Thesis. (Supervised by Zhou Y H)

    Google Scholar 

  21. Zhou YH, Wang XM, Wang JZ, Liu XJ (2011) A wavelet numerical method for solving nonlinear fractional vibration, diffusion and wave equations. Comput Model Eng Sci 7(2):137–160

    MathSciNet  MATH  Google Scholar 

  22. Zhang L, Liu XJ, Zhou YH, Wang JZ (2013) Influence of vanishing moments on the accuracy of a modified wavelet Galerkin method for nonlinear boundary value problems. AIP Conference Proceedings. Amer Inst Phys 1558(1): 942–945

    Google Scholar 

  23. Ko J, Kurdila AJ, Pilant MS (1995) A class of finite element methods based on orthonormal, compactly supported wavelets. Comput Mech 16(4):235–244

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma JX, Xue JJ, Yang SJ, He ZJ (2003) A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elem Anal Des 39(10):965–975

    Article  Google Scholar 

  25. Han JG, Ren WX, Huang Y (2006) A spline wavelet finite-element method in structural mechanics. Int J Numer Meth Eng 66(1):166–190

    Article  MATH  Google Scholar 

  26. Ray SS (2012) On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl Math Comput 218(9):5239–5248

    MathSciNet  MATH  Google Scholar 

  27. Ray SS, Gupta AK (2014) A two-dimensional Haar wavelet approach for the numerical simulations of time and space fractional Fokker-Planck equations in modelling of anomalous diffusion systems. J Math Chem 52(8):2277–2293

    Article  MathSciNet  MATH  Google Scholar 

  28. Gupta AK, Ray SS (2015) Numerical treatment for the solution of fractional fifth-order Sawada-Kotera equation using second kind Chebyshev wavelet method. Appl Math Model 39(17):5121–5130

    Article  MathSciNet  MATH  Google Scholar 

  29. Ray SS, Gupta AK (2016) Numerical solution of fractional partial differential equation of parabolic type with Dirichlet boundary conditions using two-dimensional Legendre wavelets method. J Comput Nonlinear Dyn 11(1):011012

    Article  Google Scholar 

  30. Amaratunga K, Williams JR, Qian S, Weiss J (1994) Wavelet-Galerkin solutions for one-dimensional partial differential equations. Int J Numer Meth Eng 37(16):2703–2716

    Article  MathSciNet  MATH  Google Scholar 

  31. Avudainayagam A, Vani C (2000) Wavelet-Galerkin method for integro-differential equations. Appl Numer Math 32(3):247–254

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu XJ, Zhou YH, Wang XM, Wang JZ (2013) A wavelet method for solving a class of nonlinear boundary value problems. Commun Nonlinear Sci Numer Simul 18(8):1939–1948

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang L, Wang JZ, Zhou YH (2015) Wavelet solution for large deflection bending problems of thin rectangular plates. Arch Appl Mech 85(3):355–365

    Article  MATH  Google Scholar 

  34. Chen MQ, Hwang C, Shih YP (1996) The computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Meth Eng 39(17):2921–2944

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu Q, Xu H, Liao SJ (2018) Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int J Heat Mass Transf 126:221–236

    Article  Google Scholar 

  36. Yu Q, Xu H (2018) Novel wavelet-homotopy Galerkin technique for analysis of lid-driven cavity flow and heat transfer with non-uniform boundary conditions. Appl Math Mech 39(12):1691–1718

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu Q, Xu H, Liao SJ, Yang ZC (2019) A novel homotopy-wavelet approach for solving stream function-vorticity formulation of Navier-Stokes equations. Commun Nonlinear Sci Numer Simul 67:124–151

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu Q, Xu H, Liao SJ, Yang ZC (2018) Nonlinear analysis for extreme large bending deflection of a rectangular plate on non-uniform elastic foundations. Appl Math Model 61:316–340

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen QB, Xu H (2020) Coiflet wavelet-Homotopy solution of channel flow due to orthogonally moving porous walls governed by the Navier-Stokes equations. J Math 2020:1–12

    MathSciNet  MATH  Google Scholar 

  40. Ray SS, Gupta AK (2013) On the solution of Burgers-Huxley and Huxley equation using wavelet collocation method. Comput Model Eng Sci 91:409–424

    MathSciNet  MATH  Google Scholar 

  41. Koziol P, Hryniewicz Z (2006) Analysis of bending waves in bending on viscoelastic random foundation using wavelet technique. Int J Solids Struct 43:6965–6977

    Article  MATH  Google Scholar 

  42. Koziol P, Mares C, Esat I (2006) A wavelet approach for the analysis of bending waves in a beam on viscoelastic random foundation. Appl Mech Mater 5:239–246

    Article  Google Scholar 

  43. Soong TT (1973) Random differential equations in science and engineering. Academic Press, New York

    MATH  Google Scholar 

  44. Adomian G (1983) Stochastic systems. Academic Press, New York

    MATH  Google Scholar 

  45. Daubechies I (1993) Orthonormal bases of compactly supported wavelets II. Variations on a theme. SIAM J Math Analysis 24(2):499–519

    Google Scholar 

  46. Koziol P, Mares C, Esat I (2008) Wavelet approach to vibratory analysis of surface due to a load moving in the layer. Int J Solids Struct 45:2140–2159

    Article  MATH  Google Scholar 

  47. Koziol P, Hryniewicz Z, Mares C (2009) Wavelet analysis of beam-soil structure response for fast moving train. J Phys: Confer Ser. 181(1):012052. IOP Publishing

    Google Scholar 

  48. Koziol P, Mares C (2010) Wavelet approach for vibration analysis of fast moving load on a viscoelastic medium. Shock Vib 17(4, 5):461–472

    Google Scholar 

  49. Hryniewicz Z (2011) Dynamics of Rayleigh beam on nonlinear foundation due to moving load using Adomian decomposition and Coiflet expansion. Soil Dyn Earthq Eng 31(8):1123–1131

    Article  Google Scholar 

  50. Koziol P, Hryniewicz Z (2012) Dynamic response of a beam resting on a nonlinear foundation to a moving load: coiflet-based solution. Shock Vibr 19(5):995–1007

    Article  Google Scholar 

  51. Koziol P, Neves MM (2012) Multilayered infinite medium subject to a moving load: dynamic response and optimization using coiflet expansion. Shock Vibr 19(5):1009–1018

    Article  Google Scholar 

  52. Hryniewicz Z, Kozioł P. Wavelet-based solution for vibrations of a beam on a nonlinear viscoelastic foundation due to moving load. Journal of Theoretical and Applied Mechanics. 2013, 51.

    Google Scholar 

  53. Koziol P (2014) Wavelet approximation of Adomian’s decomposition applied to the nonlinear problem of a double-beam response subject to a series of moving loads. J Theor Appl Mech 52(3):687–697

    Google Scholar 

  54. Koziol P (2016) Experimental validation of wavelet based solution for dynamic response of railway track subjected to a moving train. Mech Syst Signal Process 79:174–181

    Article  Google Scholar 

  55. Beylkin G, Coifman R, Rokhlin V (1991) Fast wavelet transforms and numerical algorithms I. Commun Pure Appl Math 44(2):141–183

    Article  MathSciNet  MATH  Google Scholar 

  56. Si LT, Zhao Y, Zhang YH, Kennedy D (2016) A hybrid approach to analyze a beam-soil structure under a moving random load. J Sound Vib 382:179–192

    Article  Google Scholar 

  57. Lu PM, Shi CJ (2012) Analysis solution study of steady response on asphalt road based on the wavelet theory. Chinese J Comput Mech 29(5):806–810 (in Chinses)

    Google Scholar 

  58. Chun-Juan SHI, Peng-min L (2013) Study on the dynamic response of asphalt pavement based on the nonlinear viscoelastic model. Eng Mech 2:47 (in Chinses)

    Google Scholar 

  59. Liu XY, Shi CJ (2012) Random characteristics and reliability analysis of asphalt pavement under vehicle random load. China J Highway Transport 25(6):49–55 (in Chinses)

    Google Scholar 

  60. Meyer Y (1992) Wavelets and operators. Cambridge University Press

    Google Scholar 

  61. Monzón L, Beylkin G, Hereman W (1999) Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets). Appl Comput Harmonic Anal 7(2):184–210

    Article  MathSciNet  MATH  Google Scholar 

  62. Lieb M, Sudret B (1998) A fast algorithm for soil dynamics calculations by wavelet decomposition. Arch Appl Mech 68(3–4):147–157

    Article  MATH  Google Scholar 

  63. Grundmann H, Lieb M, Trommer E (1999) The response of a layered half-space to traffic loads moving along its surface. Arch Appl Mech 69(1):55–67

    Article  MATH  Google Scholar 

  64. Zhou YH, Wang JZ, Zheng XJ (1998) Applications of wavelet Galerkin FEM to bending of beam and plate structures. Appl Math Mecha 19(8):745–755

    Article  MATH  Google Scholar 

  65. Zhou YH, Wang JZ (1998) A dynamic control model of piezoelectric cantilevered beam-plate based on wavelet theory. Acta Mech Sin 30(6):719–727 (in Chinese)

    MathSciNet  Google Scholar 

  66. Wang JZ, Zhou YH (1998) Error estimation of the generalized wavelet Gaussian integral method. J Lanzhou Univ 34:26–30. (in Chinese)

    Google Scholar 

  67. Zhou YH, Wang JZ (1999) Generalized Gaussian integral methods for calculations of scaling function transform of wavalets and its applications. Acta Math Scientia 19(2):293–300 (in Chinese)

    MATH  Google Scholar 

  68. Zhou YH, Wang JZ, Zheng XJ (2001) A wavelet-based approach for dynamic control of intelligent piezoelectric plate structures with linear and non-linear deformation. IUTAM Symposium on Smart Structures and Structronic Systems. Springer, Dordrecht, pp 179–187

    Google Scholar 

  69. Zhou YH, Wang JZ, Zheng XJ, Jiang Q (2000) Vibration control of variable thickness plates with piezoelectric sensors and actuators based on wavelet theory. J Sound Vib 237(3):395–410

    Article  Google Scholar 

  70. Zhou YH, Wang JZ, Zheng XJ (2001) A numerical inversion of the Laplace transform by use of the scaling function transform of wavelet theory. Acta Math Scientia 21A(1):86–93 (in Chinese)

    MathSciNet  MATH  Google Scholar 

  71. Yang SJ, Ma JX, Xue JJ, He ZJ (2002) Simulation of temperature field of copier paper based on wavelet finite element method. Acta Simulate Systematica Sinica 14(9):1243–1245 (in Chinese)

    Google Scholar 

  72. Si HW, Li DX (2003) Researches on wavelet-based vibration control of large space smart structures. J National Univ Defense Technol 25(3):14–18 (in Chinese)

    Google Scholar 

  73. Ma JX, Xue JJ, Yang SJ, HE ZJ (2004) Study of the construction and application of Daubechies wavelet-based beam element. Minimicro Syst-ShenYang 25:663–666

    Google Scholar 

  74. Fenik S, Starek L (2010) Optimal PI controller with position feedback for vibration suppression. J Vib Control 16(13):2023–2034

    Article  MathSciNet  MATH  Google Scholar 

  75. Hegewald T, Inman DJ (2001) Vibration suppression via smart structures across a temperature range. J Intell Mater Syst Struct 12(3):191–203

    Article  Google Scholar 

  76. Rew KH, Han JH, Lee I (2002) Multi-modal vibration control using adaptive positive position feedback. J Intell Mater Syst Struct 13(1):13–22

    Article  Google Scholar 

  77. Ma XL, Wu B, Zhang JH, Shi X (2019) A new numerical scheme with wavelet-Galerkin followed by spectral deferred correction for solving string vibration problems. Mech Mach Theory 142:103623

    Article  Google Scholar 

  78. Wang JZ, Zhang L, Zhou YH (2018) A simultaneous space-time wavelet method for nonlinear initial boundary value problems. Appl Math Mech 39(11):1547–1566

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhang L, Wang JZ, Liu XJ, Zhou YH (2017) A wavelet integral collocation method for nonlinear boundary value problems in physics. Comput Phys Commun 215:91–102

    Article  MathSciNet  MATH  Google Scholar 

  80. Wang XM (2014) A Coiflets-based wavelet Laplace method for solving the Riccati differential equations. J Appl Math 2014:257049

    MathSciNet  MATH  Google Scholar 

  81. Wang XM (2014) A new wavelet method for solving a class of nonlinear Volterra-Fredholm integral equations. Abstract Appl Analy 2014:975985

    MathSciNet  MATH  Google Scholar 

  82. Wang XM (2014) A wavelet method for solving Bagley-Torvik equation. Comput Model Eng Sci 102(2):169–182

    MathSciNet  MATH  Google Scholar 

  83. Momani S, Shawagfeh N (2006) Decomposition method for solving fractional Riccati differential equations. Appl Math Comput 182(2):1083–1092

    MathSciNet  MATH  Google Scholar 

  84. Li Y, Sun N, Zheng B, Wang Q, Zhang Y (2014) Wavelet operational matrix method for solving the Riccati differential equation. Commun Nonlinear Sci Numer Simul 19(3):483–493

    Article  MathSciNet  MATH  Google Scholar 

  85. Cang J, Tan Y, Xu H, Liao SJ (2009) Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 40(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  86. HosseinNia SH, Ranjbar A, Momani S (2008) Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Comput Math Appl 56(12):3138–3149

    Article  MathSciNet  MATH  Google Scholar 

  87. Odibat Z, Momani S (2008) Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36(1):167–174

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-He Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, YH. (2021). Brief Introduction in Applications of Other Groups. In: Wavelet Numerical Method and Its Applications in Nonlinear Problems. Engineering Applications of Computational Methods, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-33-6643-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6643-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6642-8

  • Online ISBN: 978-981-33-6643-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics