Skip to main content

Extended Wavelet Methods to 2D Irregular Domain and Local Refinement

  • Chapter
  • First Online:
Wavelet Numerical Method and Its Applications in Nonlinear Problems

Part of the book series: Engineering Applications of Computational Methods ((EACM,volume 6))

  • 573 Accesses

Abstract

In the previous chapters, one can find that the definition domains for all the problems are restricted to regular ones when the wavelet-based method is employed, such as a rectangle in two-dimension and a cube in three-dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer Y (1992) Wavelets and operators:, vol 1. Cambridge University Press, London

    MATH  Google Scholar 

  2. Li B, Chen X (2014) Wavelet-based numerical analysis: a review and classification. Finite Elem Anal Des 81:14–31

    Article  MathSciNet  Google Scholar 

  3. Chen XF, Yang SJ, Ma JX, He ZJ (2004) The construction of wavelet finite element and its application. Finite Elem Anal Des 40:541–554

    Article  Google Scholar 

  4. Liu XJ, Wang JQ, Zhou YH, Wang JZ (2017) Wavelet methods and applications in nonlinear mechanics problems. Chin J Solid Mech 38:287–310 (in Chinese)

    Google Scholar 

  5. Liu Y, Liu Y, Cen Z (2011) Multi-scale Daubechies wavelet-based method for 2-D elastic problems. Finite Elem Anal Des 47:334–341

    Article  MathSciNet  Google Scholar 

  6. Vasilyev OV, Kevlahan NKR (2005) An adaptive multilevel wavelet collocation method for elliptic problems. J Comput Phys 206:412–431

    Article  MathSciNet  Google Scholar 

  7. Sannomaru S, Tanaka S, Yoshida K, Bui TQ, Okazawa S, Hagihara S (2017) Treatment of Dirichlet-type boundary conditions in the spline-based wavelet Galerkin method employing multiple point constraints. Appl Math Model 43:592–610

    Article  MathSciNet  Google Scholar 

  8. Donoho DL (1992) Interpolating wavelet transforms. Preprint, Department of Statistics, Stanford University 2:1–54

    Google Scholar 

  9. Liu GR (2009) Meshfree methods: moving beyond the finite element method. Taylor and Francis

    Google Scholar 

  10. Liu XJ, Liu GR, Wang JZ, Zhou YH (2019) A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment. Comput Mech 64:989–1016

    Article  MathSciNet  Google Scholar 

  11. Liu XJ, Liu GR, Wang JZ, Zhou YH (2020) A wavelet multi-resolution enabled interpolation Galerkin method for two-dimensional solids. Eng Anal Boundary Elem 117:251–268

    Article  MathSciNet  Google Scholar 

  12. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  MathSciNet  Google Scholar 

  13. Beylkin G (1992) On the representation of operators in bases of compactly supported wavelet. SIAM J Numer Anal 29:1716–1740

    Article  MathSciNet  Google Scholar 

  14. Beylkin G, Saito N (1992) Wavelets, their autocorrelation functions, and multiresolution representation of signals. SPIE Proc 1826:39–50

    Article  Google Scholar 

  15. Liu GR (2016) An overview on meshfree methods: for computational solid mechanics. Int J Comput Methods 13:1630001

    Article  MathSciNet  Google Scholar 

  16. Kincaid D, Kincaid DR, Cheney EW (2009) Numerical analysis: mathematics of scientific computing. Amer Math Soc

    Google Scholar 

  17. Kattan P (2003) MATLAB guide to finite elements: an interactive approach. Springer-Verlag, New York

    Book  Google Scholar 

  18. Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill book Company

    Google Scholar 

  19. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256

    Article  MathSciNet  Google Scholar 

  20. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Meth Eng 50:937–951

    Article  Google Scholar 

  21. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150

    Article  MathSciNet  Google Scholar 

  22. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Meth Eng 40:1483–1504

    Article  MathSciNet  Google Scholar 

  23. Liu XJ, Liu GR, Wang JZ, Zhou YH (2020) A wavelet multiresolution interpolation Galerkin method with effective treatments for discontinuity for crack growth analyses. Eng Fract Mech 225:106836

    Article  Google Scholar 

  24. Liu GR, Jiang Y, Chen L, Zhang GY, Zhang YW (2011) A singular cell-based smoothed radial point interpolation method for fracture problems. Comput Struct 89:1378–1396

    Article  Google Scholar 

  25. Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39:1213–1240

    Article  Google Scholar 

  26. Nguyen NT, Bui TQ, Zhang C, Truong TT (2014) Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method. Eng Anal Boundary Elem 44:87–97

    Article  MathSciNet  Google Scholar 

  27. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-He Zhou .

Appendices

Appendix 11.1 Proof of Essential Properties of Interpolating Wavelet

In order to prove the relation of Eq. (11.8), we first investigate the nth moment \(M_{n}^{\vartheta } = \int {x^{n} \vartheta (x)dx}\) of \(\vartheta (x)\). Using the definition of Eq. (11.5) and the binomial theorem, we have

$$\begin{array}{*{20}l} {M_{n}^{\vartheta } = \int {x^{n} \vartheta (x)dx} = \int {x^{n} \int {\psi (y)\psi (y - x)dy} dx} = \int {\psi (y)[\int {(y - x)^{n} \psi (x)dx} ]dy} } \hfill \\ { = \int {\psi (y)[\int {\sum\limits_{i = 0}^{n} {C_{n}^{i} y^{n - i} ( - x)^{i} } \psi (x)dx} ]dy} = \sum\limits_{i = 0}^{n} {C_{n}^{i} ( - 1)^{i} M_{n - i}^{\psi } M_{i}^{\psi } } } \hfill \\ \end{array} .$$
(11.72)

Then following Eq. (11.3), one can obtain

$$M_{n}^{\vartheta } = 0,\;{\text{for}}\;n = 0,1, \ldots ,\gamma - 1.$$
(11.73)

From Eqs. (11.72) and (11.73), one can see that the auto-correlation function \(\vartheta (x)\) of wavelet function has γ, and only has γ vanishing moments, because \(M_{\gamma }^{\vartheta } = C_{\gamma }^{\gamma /2} ( - 1)^{\gamma /2} (M_{\gamma /2}^{\psi } )^{2} \ne 0\) since \(M_{\gamma /2}^{\psi } \ne 0\) [12].

On the other hand, there is the relation \(\vartheta (x) = 2\theta (2x) - \theta (x)\) [8, 14]. So, we have

$$M_{n}^{\vartheta } = \int {x^{n} [2\theta (2x) - \theta (x)]dx} = 2^{ - n} \int {(2x)^{n} \theta (2x)d(2x)} - \int {x^{n} \theta (x)dx} = (2^{ - n} - 1)M_{n}^{\theta } .$$
(11.74)

Considering Eq. (11.73), we obtain

$$M_{n}^{\theta } = 0,\;{\text{for}}\;n = 1,2, \ldots ,\gamma - 1.$$
(11.75)

We note that \(M_{\gamma }^{\theta } \ne 0\) since \(M_{\gamma }^{\vartheta } \ne 0\).

When m = 0, by using the definition of Eq. (11.5) and the property \(M_{0}^{\phi } = 1\), one can directly obtain

$$M_{0}^{\theta } = \int {\theta (x)dx} = \int {\int {\phi (y)\phi (y - x)dy} dx} = \int {\phi (y) \left[ \int {\phi (y - x)dx} \right]dy} = 1.$$
(11.76)

Thus, the relation of Eq. (11.8) is proved.

For the relation of Eq. (11.9), considering the property \(p_{2k} = \delta_{0,k}\) shown in Eq. (11.7), one can directly obtain

$$\sum\limits_{{k \in {\mathbb{Z}}}} {p_{2k} (2k)^{n} } = \delta_{0,n} .$$
(11.77)

On the other hand, by using the two-scale relation of Eq. (11.6) and the binomial theorem, we have

$$\begin{aligned} M_{n}^{\theta } & = \int {x^{n} [\theta (2x) + \sum\limits_{{k \in {\mathbb{Z}}}} {p_{2k + 1} \theta (2x - 2k - 1)} ]dx} \\ & = 2^{ - n - 1} \int {(2x)^{n} \theta (2x)d(2x)} + \frac{1}{2}\sum\limits_{{k \in {\mathbb{Z}}}} {p_{2k + 1} \int {(\frac{x + (2k + 1)}{2})^{n} \theta (x)dx} } \\ & = 2^{ - n - 1} M_{n}^{\theta } + 2^{ - n - 1} \sum\limits_{{k \in {\mathbb{Z}}}} {p_{2k + 1} \int {\sum\limits_{i = 0}^{n} {C_{n}^{i} (2k + 1)^{i} } x^{n - i} \theta (x)dx} } \\ & = 2^{ - n - 1} M_{n}^{\theta } + 2^{ - n - 1} \sum\limits_{{k \in {\mathbb{Z}}}} {p_{2k + 1} \sum\limits_{i = 0}^{n} {C_{n}^{i} (2k + 1)^{i} } M_{n - i}^{\theta } } . \\ \end{aligned}$$
(11.78)

Considering the relation of Eq. (11.8), for \(n = 0,1, \ldots ,\gamma - 1\), Eq. (11.78) can be reduced into

$$M_{n}^{\theta } = 2^{ - n - 1} \delta_{0,n} + 2^{ - n - 1} \sum\limits_{k \in Z} {p_{2k + 1} (2k + 1)^{n} } = \delta_{0,n} .$$
(11.79)

According to Eqs. (11.77) and (11.79), the relation of Eq. (11.9) has been gained.

For the relation of Eq. (11.10), applying the binomial theorem, we get

$$\begin{aligned} g_{n,m} (x) & = \sum\limits_{{k \in {\mathbb{Z}}}} {(x - k)^{n} \theta^{(m)} (x - k)} \\ & = 2^{m} \sum\limits_{{k \in {\mathbb{Z}}}} {(x - k)^{n} \sum\limits_{{l \in {\mathbb{Z}}}} {p_{l} \theta^{(m)} (2x - 2k - l)} } \\ & = 2^{m} \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{i \in {\mathbb{Z}}}} {p_{i - 2k} (x - k)^{n} \theta^{(m)} (2x - i)} } \\ & = 2^{m - n} \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{i \in {\mathbb{Z}}}} {p_{i - 2k} [(2x - i) + (i - 2k)]^{n} \theta^{(m)} (2x - i)} } \\ & = 2^{m - n} \sum\limits_{{i \in {\mathbb{Z}}}} {\sum\limits_{o = 0}^{n} {C_{n}^{o} (2x - i)^{o} [\sum\limits_{{k \in {\mathbb{Z}}}} {p_{i - 2k} (i - 2k)^{n - o} } ]\theta^{(m)} (2x - i)} } . \\ \end{aligned}$$
(11.80)

Here, we have used the relation \(\theta^{(m)} (x) = 2^{m} \sum\nolimits_{{k \in {\mathbb{Z}}}} {p_{k} \theta^{(m)} (2x - k)}\) which can be directly obtained from Eq. (11.6). Considering the relation in Eq. (11.9), then, Eq. (11.80) can be reduced into

$$g_{n,m} (x) = 2^{m - n} \sum\limits_{{i \in {\mathbb{Z}}}} {(2x - i)^{n} \theta^{(m)} (2x - i)} = 2^{m - n} g_{n,m} (2x).$$
(11.81)

Defining \(G_{n,m} (x) = \int_{0}^{x} {g_{n,m} (y)dy}\) and following Eq. (11.81), we have

$$G_{n,m} (x) = 2^{m - n - 1} G_{n,m} (2x).$$
(11.82)

On the other hand, further, there is the relation

$$\begin{aligned}G_{n,m} (1) & = \int_{0}^{1} {\sum\limits_{{k \in {\mathbb{Z}}}} {(x - k)^{n} \theta^{(m)} (x - k)dx} } = \sum\limits_{{k \in {\mathbb{Z}}}} {\int_{ - k}^{ - k + 1} {x^{n} \theta^{(m)} (x)dx} } \\ & = \int {x^{n} \theta^{(m)} (x)dx} . \end{aligned}$$
(11.83)

For \(n < m\), conducting n times integrations by parts to Eq. (11.83), we have

$$\begin{aligned} G_{n,m} (1) & = \int {x^{n} \theta^{(m)} (x)dx} \left. { = x^{n} \theta^{(m - 1)} (x)} \right|_{ - \infty }^{ + \infty } - n\int {x^{n - 1} \theta^{(m - 1)} (x)dx} \\ & = ( - 1)^{n} n!\int {\theta^{(m - n)} (x)} dx = ( - 1)^{n} n!\left. {\theta^{(m - n - 1)} (x)} \right|_{ - \infty }^{ + \infty } = 0, \\ \end{aligned}$$
(11.84)

where the property \(\theta (x) \in C_{0}^{\gamma /2 - 1} [1 - \gamma ,\gamma - 1]\) is used. Similarly, for n = m, one can obtain

$$G_{n,m} (1) = ( - 1)^{n} n!\int {\theta (x)dx} = ( - 1)^{n} n!M_{0}^{\theta } = ( - 1)^{n} n!.$$
(11.85)

And for \(n > m\), doing m times integrations by parts to Eq. (11.83), we have

$$\begin{aligned} G_{n,m} (1) & = \int {x^{n} \theta^{(m)} (x)dx} = x^{n} \theta^{(m - 1)} (x)|_{ - \infty }^{ + \infty } - n\int {x^{n - 1} \theta^{(m - 1)} (x)dx} \\ & = ( - 1)^{m} n!\int {x^{n - m} \theta (x)} dx/m! = ( - 1)^{n} n!M_{n - m}^{\theta } /m! = 0 \\ \end{aligned}$$
(11.86)

for \(m = 0,1, \ldots ,\gamma /2 - 1\) and \(n = m + 1,m + 2, \ldots ,\gamma - 1\). Eqs. (11.84)–(11.86) give the relation

$$G_{n,m} (1) = ( - 1)^{n} \delta_{n,m} n!.$$
(11.87)

By performing the same analysis shown in Eqs. (11.83)–(11.87), one can obtain \(G_{n,m} ( - 1) = ( - 1)^{n + 1} \delta_{n,m} n!\) for \(n = 0,1, \ldots ,\gamma - 1\) and \(m = 0,1, \ldots ,\gamma /2 - 1\). From them, one can see that there is the relation \(G_{n,m} (x) \equiv 0\) for \(n \ne m\) since \(G_{n,m} (1) = G_{n,m} ( - 1) = 0\) and \(G_{n,m} (x) = 2^{m - n - 1} G_{n,m} (2x)\). Thus, we have

$$g_{n,m} (x) = \sum\limits_{{k \in {\mathbb{Z}}}} {(x - k)^{n} \theta^{(m)} (x - k)} = 0$$
(11.88)

for \(n = 0,1, \ldots ,\gamma - 1\), \(m = 0,1, \ldots ,\gamma /2 - 1\) and \(n \ne m\).

When n = m, Eq. (11.82) gives \(2G_{n,n} (x) = G_{n,n} (2x)\), i.e., \(2\int_{0}^{x} {g_{n,n} (y)dy} = \int_{0}^{2x} {g_{n,n} (y)dy}\), which means the relation \(g_{n,n} (x) = g_{n,n} (2x)\) for all x. Therefore, we have \(g_{n,n} (x) = c\) which is a constant, since \(g_{n,n} (x)\) is a continuous function. Finally, considering Eq. (11.87), one can obtain

$$g_{n,n} (x) \equiv g_{n,n} (1) = G_{n,n} (1) = ( - 1)^{n} n!.$$
(11.89)

According to Eqs. (11.88) and (11.89), the relation of Eq. (11.10) can be obtained.

Appendix 11.2 Multiresolution Decomposition of Interpolating Wavelet

Substituting the two-scale relation of Eq. (11.6) into the approximation Eq. (11.11) and using Eq. (11.7), we get

$$\begin{array}{*{20}l} {S^{j} f({\mathbf{x}}) = \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{l \in {\mathbb{Z}}}} {f({\mathbf{x}}_{j,k,l} )[\theta (2^{j + 1} x - 2k) + \sum\limits_{n \in Odd} {p_{n} \theta (2^{j + 1} x - 2k - n)} ]} } [\theta (2^{j + 1} x - 2l)} \hfill \\ {\quad \quad + \sum\limits_{m \in Odd} {p_{m} \theta (2^{j + 1} y - 2l - m)} ]} \hfill \\ { = \sum\limits_{k \in Even} {\sum\limits_{l \in Even} {f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{k \in Even} {\sum\limits_{l \in Odd} {[\sum\limits_{m \in Odd} {p_{m} f({\mathbf{x}}_{j + 1,k,l - m} )} ]\theta_{j + 1,k,l} ({\mathbf{x}})} } } \hfill \\ {\quad \quad + \sum\limits_{k \in Odd} {\sum\limits_{l \in Even} {[\sum\limits_{n \in Odd} {p_{n} f({\mathbf{x}}_{j + 1,k - n,l} )} ]\theta_{j + 1,k,l} ({\mathbf{x}})} } } \hfill \\ {\quad \quad + \sum\limits_{k \in Odd} {\sum\limits_{l \in Odd} {[\sum\limits_{n \in Odd} {\sum\limits_{m \in Odd} {p_{n} p_{m} f({\mathbf{x}}_{j + 1,k - n,l - m} )} } ]\theta_{j + 1,k,l} ({\mathbf{x}})} } } \hfill \\ \end{array} .$$
(11.90)

On the other hand, for \(k \in Even\) and \(l \in Odd\), one can obtain

$$\begin{aligned} & S^{j} f({\mathbf{x}}_{j + 1,k,l} ) = \sum\limits_{{n \in {\mathbb{Z}}}} {\sum\limits_{{m \in {\mathbb{Z}}}} {f({\mathbf{x}}_{j,n,m} )\theta (k/2 - n)\theta (l/2 - m)} } \\ & = \sum\limits_{{m \in {\mathbb{Z}}}} {f({\mathbf{x}}_{j + 1,j,k,m} )\sum\limits_{o \in Odd} {p_{o} \theta (l - 2m - o)} } = \sum\limits_{o \in Odd} {p_{o} f({\mathbf{x}}_{j + 1,k,l - o} )} , \\ \end{aligned}$$
(11.91)

where Eqs. (11.6) and (11.7) and the property \(\theta (k) = \delta_{0,k}\) for \(k \in {\mathbb{Z}}\) are considered. By using the same method, we can also obtain

$$\sum\limits_{o \in Odd} {p_{o} f({\mathbf{x}}_{j + 1,k - o,l} )} = S^{j} f({\mathbf{x}}_{j + 1,k,l} )\;{\text{for}}\;k \in Odd\;{\text{and}}\;l \in Even,$$
(11.92)
$$\sum\limits_{o \in Odd} {\sum\limits_{q \in Odd} {p_{o} p_{q} f({\mathbf{x}}_{j + 1,k - o,l - q} )} } = S^{j} f({\mathbf{x}}_{j + 1,k,l} )\;{\text{for}}\;k,l \in Odd.$$
(11.93)

Substitution of Eqs. (11.91)–(11.93) into (11.90) yields

$$S^{j} f({\mathbf{x}}) = \sum\limits_{k \in Even} {\sum\limits_{l \in Even} {f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{(k,l) \in \Re } {S^{j} f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})}$$
(11.94)

in which \(\Re\) is the set of all integer pair (k, l) with at least one element is an odd number.

Finally, Eq. (11.13) for \(R^{j} f({\mathbf{x}})\) is obtained by subtracting \(S^{j} f({\mathbf{x}})\) in Eq. (11.94) from \(S^{j + 1} f({\mathbf{x}})\) defined by Eq. (11.11). Hence, the multiresolution decomposition of Eq. (11.12) is proved.

Appendix 11.3 Error Estimation of the Interpolating Wavelet Approximation Defined on the Whole Space

Here, we first examine the relation of Eq. (11.15). For any point x, one can always find a point \({\mathbf{x}}_{j,k,l}\) satisfying \(\left| {{\mathbf{x}} - {\mathbf{x}}_{j,k,l} } \right| \le 2^{ - j} /\sqrt 2\). Then because both of \(f({\mathbf{x}})\) and \(S^{j} f({\mathbf{x}})\) are continuous functions, there exist two constants \(\varepsilon_{0}\) and \(\varepsilon_{1}\) satisfying

$$\left\| {f({\mathbf{x}}) - f({\mathbf{x}}_{j,k,l} )} \right\|_{\infty } \le \varepsilon_{0} \left| {{\mathbf{x}}- {\mathbf{x}}_{j,k,l} } \right| \le \varepsilon_{0} 2^{ - j} /\sqrt 2 ,$$
(11.95)
$$\left\| {S^{j} f({\mathbf{x}}) - S^{j} f({\mathbf{x}}_{j,k,l} )} \right\|_{\infty } \le \varepsilon_{1} \left| {{\mathbf{x}} - {\mathbf{x}}_{j,k,l} } \right| \le \varepsilon_{1} 2^{ - j} /\sqrt 2 .$$
(11.96)

Then, one can obtain

$$\begin{aligned} & \left\| {f({\mathbf{x}}) - S^{j} f({\mathbf{x}})} \right\|_{\infty } = \left\| {[f({\mathbf{x}}) - f({\mathbf{x}}_{j,k,l} )] + [S^{j} f({\mathbf{x}}_{j,k,l} ) - S^{j} f({\mathbf{x}})]} \right\|_{\infty } \\ & \quad \le \left\| {f({\mathbf{x}}) - f({\mathbf{x}}_{j,k,l} )} \right\|_{\infty } + \left\| {S^{j} f({\mathbf{x}}_{j,k,l} ) - S^{j} f({\mathbf{x}})} \right\|_{\infty } \le C_{0,\infty } 2^{j} , \\ \end{aligned}$$
(11.97)

which gives the relation of Eq. (11.15).

For the relation of Eq. (11.16), by using the Taylor expansion for \(f({\mathbf{x}})\) at the point x, we have

$$f({\tilde{\mathbf{x}}}) = \sum\limits_{n = 0}^{\lambda - 1} {\frac{1}{n!}[(\tilde{x} - x)\frac{\partial }{\partial x} + (\tilde{y} - y)\frac{\partial }{\partial y}]^{n} f({\mathbf{x}})} + \frac{1}{\lambda !}[(\tilde{x} - x)\frac{\partial }{\partial x} + (\tilde{y} - y)\frac{\partial }{\partial y}]^{\lambda } f({\mathbf{x}}_{\theta } ),$$
(11.98)

where \({\mathbf{x}}_{\theta }\) is on the rectangle with two diagonal apexes \({\tilde{\mathbf{x}}}\) and x, and

$$[(\tilde{x} - x)\frac{\partial }{\partial x} + (\tilde{y} - y)\frac{\partial }{\partial y}]^{n} f({\mathbf{x}}) = \sum\limits_{m = 0}^{n} {C_{n}^{m} (\tilde{x} - x)^{m} (\tilde{y} - y)^{n - m} D_{n}^{m} f({\mathbf{x}})}$$
(11.99)

with \(D_{n}^{m} f({\mathbf{x}}) = \left. {\frac{{\partial^{n} f}}{{\partial x^{m} \partial y^{n - m} }}} \right|_{{\mathbf{x}}}\). Assigning \({\tilde{\mathbf{x}}} = {\mathbf{x}}_{j,k,l}\) to Eq. (11.98) and then substituting them into Eq. (11.11), one gains

$$\begin{aligned} S^{j} f({\mathbf{x}}) & = \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{ \in {\mathbb{Z}}}} {\sum\limits_{n = 0}^{\lambda - 1} {\frac{1}{n!}\sum\limits_{m = 0}^{n} {C_{n}^{m} (\frac{k}{{2^{j} }} - x)^{m} (\frac{l}{{2^{j} }} - y)^{n - m} D_{n}^{m} f({\mathbf{x}})\theta_{j,k,l} ({\mathbf{x}})} } } } \\ & \quad + \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{l \in {\mathbb{Z}}}} {\frac{1}{\lambda !}\sum\limits_{m = 0}^{\lambda } {C_{n}^{m} (\frac{k}{{2^{j} }} - x)^{m} (\frac{l}{{2^{j} }} - y)^{\lambda - m} D_{\lambda }^{m} f({\mathbf{x}}_{\theta ,k,l} )} } } \\ & = \sum\limits_{n = 0}^{\lambda - 1} {\frac{{2^{ - jn} }}{n!}\sum\limits_{m = 0}^{n} {[C_{n}^{m} \sum\limits_{{k \in {\mathbb{Z}}}} {(k - 2^{j} x)^{m} \theta (2^{j} x - k)} \sum\limits_{{l \in {\mathbb{Z}}}} {(l - 2^{j} y)^{n - m} \theta (2^{j} y - l)} D_{n}^{m} f({\mathbf{x}})]} } \\ & \quad + \frac{{2^{ - j\lambda } }}{\lambda !}\sum\limits_{m = 0}^{\lambda } {[C_{\lambda }^{m} \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{l \in {\mathbb{Z}}}} {(k - 2^{j} x)^{m} (l - 2^{j} y)^{\lambda - m} \theta_{j,k,l} ({\mathbf{x}})D_{\lambda }^{m} f({\mathbf{x}}_{\theta ,k,l} )} } ]} \\ \end{aligned}$$
(11.100)

in which \({\mathbf{x}}_{\theta ,k,l}\) is on the rectangle with two diagonal apexes \({\mathbf{x}}_{j,k,l}\) and x. Then, following the property of Eq. (11.10), we have

$$\sum\limits_{{k \in {\mathbb{Z}}}} {(k - 2^{j} x)^{q} \theta (2^{j} x - k)} = \delta_{0,q} \;{\text{for}}\;q = 0,1, \ldots ,\gamma - 1.$$
(11.101)

Substituting Eqs. (11.101) into (11.100), and considering \(\lambda \le \gamma\), we have

$$S^{j} f({\mathbf{x}}) = f({\mathbf{x}}) + \frac{{2^{ - j\lambda } }}{\lambda !}\sum\limits_{m = 0}^{\lambda } {[C_{\lambda }^{m} \sum\limits_{{k \in {\mathbb{Z}}}} {\sum\limits_{{l \in {\mathbb{Z}}}} {(k - 2^{j} x)^{m} (l - 2^{j} y)^{\lambda - m} \theta_{j,k,l} ({\mathbf{x}})D_{\lambda }^{m} f({\mathbf{x}}_{\theta ,k,l} )} } ]} .$$
(11.102)

Since \(\Omega_{j,k,l}^{\inf } = [2^{ - j} (1 - \gamma + k),2^{ - j} (\gamma + k - 1)] \times [2^{ - j} (1 - \gamma + l),2^{ - j} (\gamma + l - 1)]\) and \(\theta_{j,k,l} ({\mathbf{x}}) \in C_{0}^{\gamma /2 - 1} \Omega_{j,k,l}^{\inf }\), we have the relations

$$\left\| {(k - 2^{j} x)^{m} (l - 2^{j} y)^{\lambda - m} \theta_{j,k,l} ({\mathbf{x}})} \right\|_{\infty } \le (\gamma - 1)^{\lambda } \left\| {\theta_{j,k,l} ({\mathbf{x}})} \right\|_{\infty } \;{\text{for all}}\;k,l \in {\mathbb{Z}},$$
(11.103)

and for any point x

$$\theta_{j,k,l} ({\mathbf{x}}) = 0\;{\text{when}}\;k \notin (2^{j} x - \lambda + 1,2^{j} x + \lambda - 1)\;{\text{or}}\;l \notin (2^{j} y - \lambda + 1,2^{j} y + \lambda - 1).$$
(11.104)

Finally, following Eqs. (11.100)–(11.104), one can obtain

$$\begin{aligned} & \left\| {f({\mathbf{x}}) - S^{j} f({\mathbf{x}})} \right\|_{\infty } \le 2^{ - j\lambda } \frac{{(2\gamma - 1)^{2} (\gamma - 1)^{\lambda } }}{\lambda !}\left\| {\theta_{j,k,l} ({\mathbf{x}})} \right\|_{\infty } \sum\limits_{m = 0}^{\lambda } {C_{\lambda }^{m} \left\| {D_{\lambda }^{m} f({\mathbf{x}}_{\theta ,k,l} )} \right\|_{\infty } } \\ & \quad \le C_{1,\infty } 2^{ - j\lambda } \\ \end{aligned}$$
(11.105)

in which the properties \(\theta_{j,k,l} ({\mathbf{x}}) \in C^{0} (R^{2} )\) and \(f({\mathbf{x}}) \in C^{\lambda } (R^{2} )\) are considered. Specially, if \(D_{\lambda }^{m} f({\mathbf{x}}) \equiv 0\) for \(m = 0,1, \ldots ,\lambda\), we have \(C_{1,\infty } = 0\) from Eq. (11.105). On the basis of Eq. (11.105), it is very easy to check Eq. (10.17) holding.

Appendix 11.4 Error Estimation of the Interpolating Wavelet Approximation Defined on a Finite Domain

Since \(f({\mathbf{x}}) \in C^{\mu } (\Omega )\), one can always find a way to supplement the definition of function \(f({\mathbf{x}})\) in the domain \(\overline{\Omega }\) satisfying \(f({\mathbf{x}}) \in C^{\mu } (\Omega \cup \overline{\Omega })\). Then following Eqs. (11.20)–(11.22), we have

$$\begin{array}{*{20}l} {S_{L}^{j} f({\mathbf{x}}) = \sum\limits_{l = 1}^{{N_{j} }} {f({\mathbf{x}}_{l} )\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})} + \sum\limits_{l = 1}^{{N_{{\overline{\Omega }}} }} {f({\overline{\mathbf{x}}}_{l} )\theta_{{j,kx({\overline{\mathbf{x}}}_{l} ),ky({\overline{\mathbf{x}}}_{l} )}} ({\mathbf{x}})} } \hfill \\ { + \sum\limits_{l = 1}^{{N_{{\overline{\Omega }}} }} {[\tilde{f}_{l} ({\overline{\mathbf{x}}}_{l} ) - f({\overline{\mathbf{x}}}_{l} )]\theta_{{j,kx({\overline{\mathbf{x}}}_{l} ),ky({\overline{\mathbf{x}}}_{l} )}} ({\mathbf{x}})} } \hfill \\ { = S^{j} f({\mathbf{x}}) + \sum\limits_{l = 1}^{{N_{{\overline{\Omega }}} }} {[\tilde{f}_{l} ({\overline{\mathbf{x}}}_{l} ) - f({\overline{\mathbf{x}}}_{l} )]\theta_{{j,kx({\overline{\mathbf{x}}}_{l} ),ky({\overline{\mathbf{x}}}_{l} )}} ({\mathbf{x}})} } \hfill \\ \end{array} \;{\text{for}}\;{\mathbf{x}} \in \Omega .$$
(11.106)

By applying Theorem 11.1 and Eq. (11.106), one can obtain

$$\begin{aligned} & \left\| {S_{L}^{j} f({\mathbf{x}}) - f({\mathbf{x}})} \right\|_{\infty } = \left\| {S^{j} f({\mathbf{x}}) - f({\mathbf{x}})} \right\|_{\infty } + \sum\limits_{l = 1}^{{N_{{\overline{\Omega }}} }} {\left\| {[\tilde{f}_{l} ({\overline{\mathbf{x}}}_{l} ) - f({\overline{\mathbf{x}}}_{l} )]\theta_{{j,kx({\overline{\mathbf{x}}}_{l} ),ky({\overline{\mathbf{x}}}_{l} )}} ({\mathbf{x}})} \right\|_{\infty } } \\ & \quad \le C_{1,\infty } 2^{ - j\lambda } + \sum\limits_{l = 1}^{{N_{{\overline{\Omega }}} }} {\left\| {[\tilde{f}_{l} ({\overline{\mathbf{x}}}_{l} ) - f({\overline{\mathbf{x}}}_{l} )]\theta_{{j,kx({\overline{\mathbf{x}}}_{l} ),ky({\overline{\mathbf{x}}}_{l} )}} ({\mathbf{x}})} \right\|_{\infty } } \\ \end{aligned}$$
(11.107)

for \({\mathbf{x}} \in \Omega\). Since \(\tilde{f}_{l} ({\mathbf{x}})\) is a Lagrange interpolation with order \(\eta_{l}\) of function \(f({\mathbf{x}})\), by using the relations \(\left| {\overline{x}_{l} - \tilde{x}_{l,i} } \right| \le \alpha_{1} 2^{ - j}\) and \(\left| {\overline{y}_{l} - \tilde{y}_{l,i} } \right| \le \alpha_{2} 2^{ - j}\), we get [16]

$$\left| {f({\overline{\mathbf{x}}}_{l} ) - \tilde{f}_{l} ({\overline{\mathbf{x}}}_{l} )} \right| \le \varepsilon_{2} 2^{{ - j\min \left\{ {\mu ,\eta_{l} } \right\}}} ,$$
(11.108)

where \(\varepsilon_{2}\) is a constant with property \(\varepsilon_{2} = 0\) when \(D_{\lambda }^{m} f({\mathbf{x}}) \equiv 0\) for \(m = 0,1, \ldots ,\lambda\). Finally, by considering Eq. (11.104) and \(\theta_{j,k,l} ({\mathbf{x}}) \in C_{0}^{\gamma /2 - 1} \Omega_{j,k,l}^{\inf }\), Eq. (11.107) can be expressed as

$$\left\| {S_{L}^{j} f({\mathbf{x}}) - f({\mathbf{x}})} \right\|_{\infty } \le [C_{1,\infty } + (2\gamma - 1)^{2} \varepsilon_{4} ]2^{ - j\lambda } = C_{2,\infty } 2^{ - j\lambda } \;{\text{for}}\;{\mathbf{x}} \in \Omega ,$$
(11.109)

where \(C_{2,\infty } = 0\) when \(D_{\lambda }^{m} f({\mathbf{x}}) \equiv 0\) for \(m = 0,1, \ldots ,\lambda\). Based on Eq. (11.109), finally, there is no difficulty for one to check Eq. (11.25) holding.

Appendix 11.5 Proof of the Interpolating Property for the Modified Multiresolution Approximation

If J = j0 in Eq. (11.28) , following the delta function property of the modified wavelet basis \(\phi_{n} ({\mathbf{x}}_{k} )\) discussed after Eq. (11.23), we can directly obtain

$$P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}_{k} ) \equiv S^{{j_{0} }} f({\mathbf{x}}_{k} ) = f({\mathbf{x}}_{k} )\;{\text{for all nodes}}\;{\mathbf{x}}_{k} .$$
(11.110)

Then we assume

$$P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) \equiv f({\mathbf{x}}_{j,n,m} )\;{\text{for}}\;(n,m) \in \Re_{j} \;{\text{and}}\;j_{0} \le j \le o.$$
(11.111)

Following Eqs. (11.27) and (11.29), we obtain

$$P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) = P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) + \sum\limits_{{(k,l) \in \Re_{o} }} {[f({\mathbf{x}}_{o + 1,k,l} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,k,l} )]\theta_{o + 1,k,l} } ({\mathbf{x}}_{j,n,m} )$$
(11.112)

for \((n,m) \in \Re_{j}\) and \(j_{0} \le j \le o + 1\).

For all nodes \({\mathbf{x}}_{j,n,m}\), \(j_{0} \le j \le o\), one can gain

$$\theta_{o + 1,k,l} ({\mathbf{x}}_{j,n,m} ) = \theta (2^{o + 1 - j} n - k)\theta (2^{o + 1 - j} m - l) = 0$$

by considering the interpolation property \(\theta (q) = \delta_{0,q}\) for all \(q \in {\mathbb{Z}}\). Because both \(2^{o + 1 - j} n\) and \(2^{o + 1 - j} m\) are even numbers, and at least one of k and l is odd number, therefore, Eq. (11.112) and the assumption (11.111) give the following equation

$$P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) = P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) = f({\mathbf{x}}_{j,n,m} )\;{\text{for}}\;j_{0} \le j \le o.$$
(11.113)

For \(j = o + 1\) in Eq. (11.112), by using the interpolation property \(\theta_{o + 1,k,l} ({\mathbf{x}}_{o + 1,n,m} ) = \theta (n - k)\theta (m - l) = \delta_{n,k} \delta_{m,l}\), Eq. (11.112) can be reduced into

$$\begin{aligned} & P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{o + 1,n,m} ) = P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) + \sum\limits_{{(k,l) \in \Re_{o} }} {[f({\mathbf{x}}_{o + 1,k,l} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,k,l} )]\delta_{n,k} \delta_{m,l} } \\ & \quad = P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) + f({\mathbf{x}}_{o + 1,n,m} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) = f({\mathbf{x}}_{o + 1,n,m} ) \\ \end{aligned}$$
(11.114)

for \(j = o + 1\). Hence, Eqs. (11.113) and (11.114) give

$$P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) \equiv f({\mathbf{x}}_{j,n,m} )\;{\text{for}}\;(n,m) \in \Re_{j} \;{\text{and}}\;j_{0} \le j \le o + 1.$$
(11.115)

Finally, combining the recurrence relations (11.111) and (11.115) with the starting condition of Eq. (11.110), the Proposition 11.2 is proved.

Appendix 11.6 Error Estimation of the Modified Interpolating Multiresolution Approximation

Following the relations of Eqs. (11.26) and (11.27), one can obtain

$$\begin{aligned} & \left\| {f({\mathbf{x}}) - P_{{j_{0} }}^{n} f({\mathbf{x}})} \right\|_{\infty } \le \left\| {f({\mathbf{x}}) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}})} \right\|_{\infty } \\ & \quad + \sum\limits_{{(k,l) \in \Re_{n - 1} }} {\left| {f({\mathbf{x}}_{j + 1,k,l} ) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}}_{j + 1,k,l} )} \right| \times \left\| {\theta_{j + 1,k,l} ({\mathbf{x}})} \right\|_{\infty } } \\ \end{aligned}$$
(11.116)

for \(n > j_{0}\).

By considering \(\theta_{j,k,l} ({\mathbf{x}}) \in C_{0}^{\gamma /2 - 1} \Omega_{j,k,l}^{\inf }\) and Eqs. (11.104), (11.116) can be expressed as

$$\left\| {f({\mathbf{x}}) - P_{{j_{0} }}^{n} f({\mathbf{x}})} \right\|_{\infty } \le \varepsilon_{3} \left\| {f({\mathbf{x}}) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}})} \right\|_{\infty }$$
(11.117)

in which \(\varepsilon_{3}\) is a constant. By applying Eq. (11.117) iteratively, and considering the relation \(P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}) = S_{L}^{{j_{0} }} f({\mathbf{x}})\) and Theorem 11.2, one can obtain

$$\left\| {f({\mathbf{x}}) - P_{{j_{0} }}^{J} f({\mathbf{x}})} \right\|_{\infty } \le \varepsilon_{4} C_{2,\infty } \left\| {f({\mathbf{x}}) - S_{L}^{{j_{0} }} f({\mathbf{x}})} \right\|_{\infty } \le C_{3,\infty } 2^{{ - j_{0} \lambda }} ,$$
(11.118)

where \(\varepsilon_{4}\) is a constant, and \(C_{3,\infty } = 0\) when \(D_{\lambda }^{m} f({\mathbf{x}}) \equiv 0\) for \(m = 0,1, \ldots ,\lambda\). On the basis of Eq. (11.118), there is no difficulty for one to check Eq. (11.30) holding.

Appendix 11.7 Construction of the Targeted Interpolation Based on Interpolating Wavelet

The method of mathematic induction is employed here to prove the expression of Eq. (11.34). First, for \(P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}})\) one can directly obtain the relation

$$P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}) = \sum\limits_{{n \in \Re_{{j_{0} }} }} {f({\mathbf{x}}_{n} )\phi_{n} ({\mathbf{x}})} = \sum\limits_{{n \in \Re_{{j_{0} }} }} {a_{n} \phi_{n} ({\mathbf{x}})} = \sum\limits_{{n \in \Re_{{j_{0} }}^{I} }} {f({\mathbf{x}}_{n} )\Theta_{{j_{0} ,n}} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{{j_{0} }}^{R} }} {c_{n} \Theta_{{j_{0} ,n}} ({\mathbf{x}})} ,$$
(11.119)

where the basis function \(\Theta_{{j_{0} ,n}} ({\mathbf{x}}) = \phi_{n} ({\mathbf{x}})\) for \(n \in \Re_{{j_{0} }} = \Re_{{j_{0} }}^{I} \cup \Re_{{j_{0} }}^{R}\). And it is also easy to check the relation \(P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}_{n} ) \equiv f({\mathbf{x}}_{n} )\) held for \(n \in \Re_{{j_{0} }}^{I}\) by using the property \(\phi_{n} ({\mathbf{x}}_{m} ) = \delta_{n,m}\) for \(\rho (m) \le \rho (n)\). Based on such a property, in fact, we can further directly obtain the relation \(P_{{j_{0} }}^{{j_{\max } }} f({\mathbf{x}}_{n} ) \equiv f({\mathbf{x}}_{n} )\) for \(n \in \Re_{{j_{0} }}\).

Next, we assume that there is the expression

$$P_{{j_{0} }}^{j} f({\mathbf{x}}) = \sum\limits_{{n \in \Re_{ \le j}^{I} }} {f({\mathbf{x}}_{n} )\Theta_{j,n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{ \le j}^{R} }} {c_{n} \Theta_{j,n} ({\mathbf{x}})} = \sum\limits_{{n \in \Re_{ \le j} }} {a_{n} \Theta_{j,n} ({\mathbf{x}})}$$
(11.120)

in which \(\Re_{ \le j}^{I} = \cup_{{q = j_{0} }}^{j} \Re_{q}^{I}\) and \(\Re_{ \le j}^{R} = \cup_{{q = j_{0} }}^{j} \Re_{q}^{R}\). Substitution of Eqs. (11.120) into  (11.34) leads to

$$\begin{aligned} P_{{j_{0} }}^{j + 1} f({\mathbf{x}}) & = P_{{j_{0} }}^{j} f({\mathbf{x}}) + \sum\limits_{{n \in \Re_{j + 1}^{I} }} {[f({\mathbf{x}}_{n} ) - P_{{j_{0} }}^{j} f({\mathbf{x}}_{n} )]\phi_{n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{j + 1}^{R} }} {c_{n} \phi_{n} ({\mathbf{x}})} \\ & = \sum\limits_{{n \in \Re_{ \le j}^{I} }} {f({\mathbf{x}}_{n} )\Theta_{j,n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{j + 1}^{I} }} {f({\mathbf{x}}_{n} )\phi_{n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{ \le j}^{R} }} {c_{n} \Theta_{j,n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{j + 1}^{R} }} {c_{n} \phi_{n} ({\mathbf{x}})} \\ & \quad - \sum\limits_{{n \in \Re_{j + 1}^{I} }} {\sum\limits_{{m \in \Re_{ \le j}^{I} }} {f({\mathbf{x}}_{m} )\Theta_{j,m} ({\mathbf{x}}_{n} )\phi_{n} ({\mathbf{x}})} } - \sum\limits_{{n \in \Re_{j + 1}^{I} }} {\sum\limits_{{m \in \Re_{ \le j}^{R} }} {c_{m} \Theta_{j,m} ({\mathbf{x}}_{n} )\phi_{n} ({\mathbf{x}})} } \\ & = \sum\limits_{{n \in \Re_{ \le j}^{I} }} {f({\mathbf{x}}_{n} )[\Theta_{j,n} ({\mathbf{x}}) - \sum\limits_{{m \in \Re_{j + 1}^{I} }} {\Theta_{j,n} ({\mathbf{x}}_{m} )\phi_{m} ({\mathbf{x}})} ]} + \sum\limits_{{n \in \Re_{j + 1}^{I} }} {f({\mathbf{x}}_{n} )\phi_{n} ({\mathbf{x}})} \\ & \quad + \sum\limits_{{n \in \Re_{ \le j}^{R} }} {c_{n} [\Theta_{j,n} ({\mathbf{x}}) - \sum\limits_{{m \in \Re_{j + 1}^{I} }} {\Theta_{j,n} ({\mathbf{x}}_{m} )\phi_{m} ({\mathbf{x}})} ]} + \sum\limits_{{n \in \Re_{j + 1}^{R} }} {c_{n} \phi_{n} ({\mathbf{x}})} \\ & = \sum\limits_{{n \in \Re_{ \le j + 1}^{I} }} {f({\mathbf{x}}_{n} )\Theta_{j + 1,n} ({\mathbf{x}})} + \sum\limits_{{n \in \Re_{ \le j + 1}^{R} }} {c_{n} \Theta_{j + 1,n} ({\mathbf{x}})} = \sum\limits_{{n \in \Re_{ \le j + 1} }} {a_{n} \Theta_{j + 1,n} ({\mathbf{x}})} . \\ \end{aligned}$$
(11.121)

By iteratively using the relation of Eq. (11.121) and the starting condition (11.119), one can obtain the formula of Eq. (11.34).

It can be seen from Eqs. (11.119)–(11.121) that the function \(\Theta_{j,n} ({\mathbf{x}})\) for \(j_{0} \le j \le j_{\max }\) and \(n \in \Re\) is a linear combination of modified wavelet basis functions \(\phi_{n} ({\mathbf{x}})\). Therefore, Eq. (11.120) can be rewritten into the matrix form

$$P_{{j_{0} }}^{j} f({\mathbf{x}}) = {{\varvec{\Phi}}}({\mathbf{x}}){\mathbf{B}}^{j} {\mathbf{a}}$$
(11.122)

in which the vectors \({{\varvec{\Phi}}}({\mathbf{x}}) = \left\{ {\phi_{n} ({\mathbf{x}}),n = 1,2, \ldots ,N} \right\}\) and \({\mathbf{a}} = \left\{ {a_{n} ,n = 1,2, \ldots ,N} \right\}^{{\text{T}}}\), and \({\mathbf{B}}^{j}\) is the N × N transformation matrix. Based on Eq. (11.119), one can directly obtain

$${\mathbf{B}}^{{j_{0} }} = \left\{ {b_{kk}^{{j_{0} }} = 1\;{\text{for}}\;k = \Re_{{j_{0} }} ,\;b_{kl}^{{j_{0} }} = 0\;{\text{otherwise}}} \right\}.$$
(11.123)

Substituting Eqs. (11.122) into (11.121), we get

$$P_{{j_{0} }}^{j + 1} f({\mathbf{x}}) = {{\varvec{\Phi}}}({\mathbf{x}}){\mathbf{B}}^{j} {\mathbf{a}} + {{\varvec{\Phi}}}({\mathbf{x}})\overline{{\mathbf{B}}}^{j + 1} {\mathbf{a}} - {{\varvec{\Phi}}}({\mathbf{x}})\widetilde{{\mathbf{B}}}^{j + 1} \overline{{{\varvec{\Phi}}}}^{j + 1} {\mathbf{B}}^{j} {\mathbf{a}} = {{\varvec{\Phi}}}({\mathbf{x}}){\mathbf{B}}^{j + 1} {\mathbf{a}}$$
(11.124)

in which

$$\overline{{\mathbf{B}}}^{j + 1} = \left\{ {\overline{b}_{kk}^{j + 1} = 1\;{\text{for}}\;k = \Re_{j + 1} ,\;\overline{b}_{kl}^{j + 1} = 0\;{\text{otherwise}}} \right\},$$
(11.125)
$$\widetilde{{\mathbf{B}}}^{j + 1} = \left\{ {\tilde{b}_{kk}^{j + 1} = 1\;{\text{for}}\;k = \Re_{j + 1}^{I} ,\tilde{b}_{kl}^{j + 1} = 0\;{\text{otherwise}}} \right\},$$
(11.126)
$$\overline{{{\varvec{\Phi}}}}^{j + 1} = \left\{ {\overline{\Phi }_{kl}^{j + 1} = \phi_{l} ({\mathbf{x}}_{k} )\;{\text{for}}\;k \in \Re_{j + 1}^{I} \, ,\overline{\Phi }_{kl}^{j + 1} = 0\;{\text{otherwise}}} \right\}.$$
(11.127)

By considering the above sparse features of \(\widetilde{{\mathbf{B}}}^{j + 1}\) and \(\overline{{{\varvec{\Phi}}}}^{j + 1}\), it is easy to check the relation \(\overline{{{\varvec{\Phi}}}}^{j + 1} = \widetilde{{\mathbf{B}}}^{j + 1} \overline{{{\varvec{\Phi}}}}^{j + 1}\). Thus, Eq. (11.124) gives

$${\mathbf{B}}^{j + 1} = {\mathbf{B}}^{j} + \overline{{\mathbf{B}}}^{j + 1} - \overline{{{\varvec{\Phi}}}}^{j + 1} {\mathbf{B}}^{j} .$$
(11.128)

Considering that the wavelet basis function \(\phi_{n} ({\mathbf{x}})\) has the compact support domain \(\Omega_{n}\) and the function \(P_{{j_{0} }}^{j} f({\mathbf{x}})\) defined by Eq. (11.120) is completely independent of \(\phi_{n} ({\mathbf{x}})\) with \(\rho (n) > j\), there is the property \(\overline{\Phi }_{kl}^{j + 1} = 0\) for \(\, k \notin \Re_{j + 1}^{I}\) or \(l \notin \Re_{ \le j}^{T,k}\) for the matrix \(\overline{{{\varvec{\Phi}}}}^{j + 1}\) with \(\Re_{ \le j}^{T,k} = \Re_{ \le j}^{T} \cap \Re_{k}^{\Omega }\). Here the nodal set \(\left\{ {{\mathbf{x}}_{n} ,n \in \Re_{ \le j}^{T} } \right\}\) is consisted of all those nodes with \(\rho (n) \le j\), whose compact support domain \(\Omega_{n}\) contains at least one node \({\mathbf{x}}_{m}\) for \(\, m \in \Re^{I}\). And the nodal set \(\left\{ {{\mathbf{x}}_{m} ,m \in \Re_{k}^{\Omega } } \right\}\) is consisted of all nodes whose compact support domain \(\Omega_{m}\) contains the node \({\mathbf{x}}_{k}\).

By using the above property of \(\overline{{{\varvec{\Phi}}}}^{j}\), the transformation matrix \({\mathbf{B}}^{j}\) can be expressed as

$${\mathbf{B}}^{j} = {\mathbf{B}}_{d}^{j} + {\mathbf{B}}_{s}^{j}$$
(11.129)

in which the incomplete identity matrix \({\mathbf{B}}_{d}^{j} = \left\{ {b_{d,kk}^{j} = 1\;{\text{for}}\;k \in \Re_{ \le j} ,\;b_{d,kl}^{j} = 0\;{\text{otherwise}}} \right\}\) and the sparse matrix \({\mathbf{B}}_{s}^{j}\) are verified for all elements \(b_{s,kl}^{j} = 0\) for \(k \notin \Re^{I}\), \(l \notin \Re_{ \le j - 1}^{T,k}\) or \(k = l\).

Based on the definition in Eq. (11.123) of \({\mathbf{B}}^{{j_{0} }}\), it is very easy to obtain \({\mathbf{B}}_{d}^{{j_{0} }} = {\mathbf{B}}^{{j_{0} }}\) and \({\mathbf{B}}_{s}^{{j_{0} }} = {\mathbf{0}}\). Then, substituting Eqs. (11.129) into (11.128), we gain

$${\mathbf{B}}^{j + 1} = ({\mathbf{B}}_{d}^{j} + \overline{{\mathbf{B}}}^{j + 1} ) + {\mathbf{B}}_{s}^{j} - \overline{{{\varvec{\Phi}}}}^{j + 1} B_{d}^{j} - \overline{{{\varvec{\Phi}}}}^{j + 1} {\mathbf{B}}_{s}^{j} = {\mathbf{B}}_{d}^{j + 1} + {\mathbf{B}}_{s}^{j + 1} .$$
(11.130)

By directly examining the definition of \(\overline{{\mathbf{B}}}^{j + 1}\) given in Eq. (11.125), it is easy to check that the matrix \({\mathbf{B}}_{d}^{j + 1} = {\mathbf{B}}_{d}^{j} + \overline{{\mathbf{B}}}^{j + 1}\) is exactly the incomplete identity matrix defined in Eq. (11.129). By applying the properties \(\overline{\Phi }_{kl}^{j + 1} = 0\) for \(\, k \notin \Re_{j + 1}^{I}\) or \(l \notin \Re_{ \le j}^{T,k}\), \(b_{s,kl}^{j} = 0\) for \(k \notin \Re^{I}\) or \(l \notin \Re_{ \le j - 1}^{T,k}\), and the definition of \({\mathbf{B}}_{d}^{j}\) given in Eqs. (11.129), (11.130) gives

$${\mathbf{B}}_{s}^{j + 1} = {\mathbf{B}}_{s}^{j} - \overline{{{\varvec{\Phi}}}}^{j + 1} - \overline{{{\varvec{\Phi}}}}^{j + 1} {\mathbf{B}}_{s}^{j}$$
(11.131)

which verifies the sparsity pattern \(b_{s,kl}^{j + 1} = 0\) for \(k \notin \Re^{I}\), \(l \notin \Re_{ \le j - 1}^{T,k}\) or \(k = l\).

In Eq. (11.131), the matrix \(\overline{{{\varvec{\Phi}}}}^{j + 1}\) has been redefined as

$$\overline{{{\varvec{\Phi}}}}^{j + 1} = \left\{ {\overline{\Phi }_{kl}^{j + 1} = \phi_{l} ({\mathbf{x}}_{k} )\;{\text{for}}\;k \in \Re_{j + 1}^{I} \;{\text{and}}\;l \in \Re_{ \le j}^{T} ,\overline{\Phi }_{kl}^{j + 1} = 0\;{\text{otherwise}}} \right\},$$
(11.132)

where the properties \(\overline{\Phi }_{kl}^{j + 1} = 0\) for \(l \notin \Re_{ \le j}^{T}\) is applied.

In addition, since \(b_{s,kl}^{j + 1} = 0\) for \(k \notin \Re^{I}\), there is the relation \(\overline{{{\varvec{\Phi}}}}^{j + 1} {\mathbf{B}}_{s}^{j} = {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi } }}^{j + 1} {\mathbf{B}}_{s}^{j}\) with the sparse matrix \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi } }}^{j + 1} = \left\{ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi }_{kl}^{j + 1} = \phi_{l} ({\mathbf{x}}_{k} )\;{\text{for}}\;k \in \Re_{j + 1}^{I} \;{\text{and}}\;l \in \Re_{ \le j}^{I} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi }_{kl}^{j + 1} = 0\;{\text{otherwise}}} \right\}\).

Therefore, the final transformation matrix can be expressed as \({\mathbf{B}}^{{j_{\max } }} = {\mathbf{I}} + {\mathbf{B}}_{s}^{{J_{I} }}\) with the identity matrix I and the sparse matrix \({\mathbf{B}}_{s}^{j}\) satisfying the recurrence relation

$${\mathbf{B}}_{s}^{j + 1} = {\mathbf{B}}_{s}^{j} - \overline{{{\varvec{\Phi}}}}^{j + 1} - {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi } }}^{j + 1} {\mathbf{B}}_{s}^{j} \;{\text{with}}\;{\mathbf{B}}_{s}^{{j_{0} }} = {\mathbf{0}},$$
(11.133)

where the property \(\overline{{{\varvec{\Phi}}}}^{j} = {\mathbf{0}}\) for \(j > J_{I}\) with \(J_{I} = \max \left\{ {\rho (n),n \in \Re^{I} } \right\}\) has been considered.

By directly reducing the dimensions of matrices \({\mathbf{B}}_{s}^{j}\), and according to the sparsity features \(\overline{{{\varvec{\Phi}}}}^{j}\) and \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Phi } }}^{j}\) in Eq. (11.133) displayed above, finally, one can obtain the shape functions \(\left\{ {\Theta_{{j_{\max } ,n}} ({\mathbf{x}}), \, n \in \Re } \right\} = {{\varvec{\Phi}}}({\mathbf{x}}){\mathbf{B}}^{{j_{\max } }}\) defined by Eq. (11.35).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, YH. (2021). Extended Wavelet Methods to 2D Irregular Domain and Local Refinement. In: Wavelet Numerical Method and Its Applications in Nonlinear Problems. Engineering Applications of Computational Methods, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-33-6643-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6643-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6642-8

  • Online ISBN: 978-981-33-6643-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics