Skip to main content

Dopamine in the Pancreas

  • Chapter
  • First Online:
Dopamine in the Gut

Abstract

Dopamine (DA) presents in the pancreas at a high level. Pancreatic endocrine or exocrine is able to synthesize DA, although DA may come from other sources such as the autonomic nervous system and blood circulation. Dopamine receptors (DARs), including D1R, D2R, D3R, D4R, and D5R, are widely expressed in the pancreatic tissues. Pancreatic DA regulates insulin secretion and protects pancreas from inflammation. DA-related biomarkers such as the vesicular monoamine transporter 2 (VMAT2) and D2R have become the research hot spots to look for the therapeutic targets and develop the pancreatic islets imaging probes used for monitoring β-cell mass morphology and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

COMT:

Catechol-O-methyltransferase

D1R:

Dopamine D1 receptor

D2R:

Dopamine D2 receptor

D3R:

Dopamine D3 receptor

D4R:

Dopamine D4 receptor

D5R:

Dopamine D5 receptor

DA:

Dopamine

DARs:

Dopamine receptors

DAT:

DA transporter

DDC:

DOPA decarboxylase

GLU:

Glucagon

GSIS:

Glucose-stimulated insulin secretion

i.p.:

Intraperitoneal

IF:

Immunofluorescence

INS:

Insulin

IR:

Immunoreactivity

LAT:

l-amino acid transporter

l-DOPA:

Levodopa

MAO:

Monoamine oxidase

SST:

Somatostatin

TH:

Tyrosine hydroxylase

VMAT2:

Vesicular monoamine transporter 2

WB:

Western blot

References

  • Ahrén B, Lundquist I (1985) Effects of L-dopa-induced dopamine accumulation on 45Ca2+ efflux and insulin secretion in isolated rat islets. Pharmacology 30(2):71–82

    Article  PubMed  Google Scholar 

  • Almaça J, Molina J, Menegaz D et al (2016) Human β cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17(12):3281–3291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anlauf M, Eissele R, Schäfer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51(8):1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Barnett AH, Chapman C, Gailer K, Hayter CJ (1980) Effect of bromocriptine on maturity onset diabetes. Postgrad Med J 56(651):11–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennet H, Balhuizen A, Medina A et al (2015) Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides 71:113–120

    Article  CAS  PubMed  Google Scholar 

  • Bertelli E, Regoli M, Orazioli D, Bendayan M (2001) Association between islets of Langerhans and pancreatic ductal system in adult rat. Where endocrine and exocrine meet together? Diabetologia 44(5):575–584

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Kotagal V, Müller ML, Koeppe RA, Scott PJ, Albin RL, Frey KA, Petrou M (2014) Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson disease. Parkinsonism Relat Disord 20(12):1394–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L (2019) Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 129(10):4539–4549

    Article  PubMed  PubMed Central  Google Scholar 

  • Camargo Maluf F, Feder D, Alves de Siqueira Carvalho A (2019) Analysis of the relationship between type ii diabetes mellitus and Parkinson’s disease: a systematic review. Parkinsons Dis 2019:4951379

    PubMed  PubMed Central  Google Scholar 

  • Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M (2019) Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 225(1):e13101

    Article  CAS  Google Scholar 

  • Cataldo LR, Mizgier ML, Busso D, Olmos P, Galgani JE, Valenzuela R, Mezzano D, Aranda E, Cortes VA, Santos JL (2016) Serotonin- and dopamine-related gene expression in db/db mouse islets and in MIN6 β-cells treated with palmitate and oleate. J Diabetes Res 2016:3793781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX (2014) Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res 357(3):597–606

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hong F, Chen Y, Li J, Yao YS, Zhang Y, Zheng LF, Zhu JX (2016) Activation of islet 5-HT4 receptor regulates glycemic control through promoting insulin secretion. Eur J Pharmacol 89:354–361

    Article  CAS  Google Scholar 

  • Cline GW, McCarthy TJ, Carson RE, Calle RA (2018) Clinical and scientific value in the pursuit of quantification of beta cells in the pancreas by PET imaging. Diabetologia 61(12):2671–2673

    Google Scholar 

  • Das VA, Robinson R, Paulose CS (2006) Enhanced β-adrenergic receptors in the brain and pancreas during pancreatic regeneration in weanling rats. Mol Cell Biochem 289(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  • Das SL, Singh PP, Phillips AR, Murphy R, Windsor JA, Petrov MS (2014) Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63(5):818–831

    Article  PubMed  Google Scholar 

  • de Leeuw van Weenen JE, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B (2010) The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol 79(12):1827–1836

    Article  CAS  Google Scholar 

  • Defronzo RA (2011) Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2. Diabetes 34(6):1442

    Google Scholar 

  • Elbassuoni EA, Ahmed RF (2019) Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson’s with pre-existing diabetes. Neurochem Int 131:104583

    Article  CAS  PubMed  Google Scholar 

  • Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 61:2314–2317

    Article  CAS  PubMed  Google Scholar 

  • Erickson JD, Schafer MK, Bonner TI et al (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A 93:5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ericson LE, Hakanson R, Lundquist I (1977) Accumulation of dopamine in mouse pancreatic B-cells following injection of L-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia 13:117–124

    Article  CAS  PubMed  Google Scholar 

  • Farino ZJ, Morgenstern TJ, Maffei A et al (2019) New roles for dopamine D2 and D3 receptors in pancreatic β cell insulin secretion. Mol Psychiatry 25(9):2070–2085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukushima D, Doi H, Fukushima K et al (2010) Glutamate exocrine dynamics augmented by plasma glutamine and the distribution of amino acid transporters of the rat pancreas. J Physiol Pharmacol 61:265–271

    CAS  PubMed  Google Scholar 

  • Ganic E, Johansson JK, Bennet H, Fex M, Artner I (2015) Islet-specific monoamine oxidase a and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes. Biochem Biophys Res Commun 468(4):629–635

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Mirbolooki MR, Constantinescu C et al (2011) 18F-Fallypride PET of pancreatic islets: in vitro and in vivo rodent studies. J Nucl Med 52(7):1125–1132

    Article  PubMed  Google Scholar 

  • García-Tornadú I, Ornstein AM, Chamson-Reig A et al (2010) Disruption of the dopamine d2 receptor impairs insulin secretion and causes glucose intolerance. Endocrinology 151(4):1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DS, Holmes C (2008) Neuronal source of plasma dopamine. Clin Chem 54(11):1864–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg D (1972) The detection of psychiatric illness by questionnaire. Maudsley monograph, No. 21. Oxford University Press, London

    Google Scholar 

  • Grossrubatscher E, Veronese S, Ciaramella PD, Pugliese R, Boniardi M, De Carlis L, Torre M, Ravini M, Gambacorta M, Loli P (2008) High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors. Cancer Biol Ther 7(12):1970–1978

    Article  PubMed  Google Scholar 

  • Gylfe E (1978) Association between 5-hydroxytryptamine release and insulin secretion. J Endocrinol 78(2):239–248

    Article  CAS  PubMed  Google Scholar 

  • Han X, Li B, Ye X, Mulatibieke T, Wu J, Dai J, Wu D, Ni J, Zhang R, Xue J, Wan R, Wang X, Hu G (2017) Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2A-dependent Akt/NF-kappaB signalling pathway. Br J Pharmacol 174(24):4751–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Ni J, Wu Z et al (2020) Myeloid-specific dopamine D2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol 177(13):2991–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen SE, Hedeskov CJ (1977) Simultaneous determination of the content of serotonin, dopamine, noradrenaline and adrenaline in pancreatic islets isolated from fed and starved mouse. Acta Endocrinol 86:820–832

    Article  CAS  Google Scholar 

  • Hashimoto K, Inoue T, Higashi T, Takei S, Awata T, Katayama S, Takagi R, Okada H, Matsushita S (2009) Dopamine D1-like receptor antagonist, SCH23390, exhibits a preventive effect on diabetes mellitus that occurs naturally in NOD mouse. Biochem Biophys Res Commun 383(4):460–463

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Liu L, Fan RF et al (2014) New perspectives of vesicular monoamine transporter 2 chemical characteristics in mammals and its constant expression in type 1 diabetes rat models. Transl Res 163(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Furman BL, Gerich JE (1982) Dopaminergic suppression of pancreatic somatostatin secretion. Acta Endocrinol 101(1):56–61

    Article  CAS  Google Scholar 

  • Ivanina T, Blumenstein Y, Shistik E, Barzilai R, Dascal N (2000) Modulation of L-type Ca2+ channels by Gβγ and calmodulin via interactions with N and C termini of 1C. J Biol Chem 275:39846–39854

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki K, Horiuchi A, Ren LM, Chiba S (1995) D1 dopamine receptors mediate dopamine-induced pancreatic exocrine secretion in anesthetized dogs. Hypertens Res 18(Suppl 1):S173–S174

    Article  CAS  PubMed  Google Scholar 

  • Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M, Heeren J, Sina C, Rademacher L, Windjäger A, Haug AR, Kiefer FW, Lehnert H, Schmid SM (2017) Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metabol 102(11):4226–4234

    Article  Google Scholar 

  • Jandaghi P, Najafabadi HS, Bauer AS et al (2016) Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mouse. Gastroenterology 151(6):1218–1231

    Article  CAS  PubMed  Google Scholar 

  • Jensen BC, O’Connell TD, Simpson PC (2011) Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 51(4):518–528

    Article  CAS  PubMed  Google Scholar 

  • Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, Rorsman P, Braun M (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am J Physiol Endocrinol Metab 303(9):E1107–E1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanjia ND, Widdison AL, Lutrin FJ, Chang YB, Reber HA (1991) The antiinflammatory effect of dopamine in alcoholic hemorrhagic pancreatitis in cats. Studies on the receptors and mechanisms of action. Gastroenterology 101:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Karanjia ND, Widdison AL, Lutrin FJ, Reber HA (1994) Dopamine in models of alcoholic acute pancreatitis. Gut 35:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karhunen T, Tilgmann C, Ulmanen I, Julkunen I, Panula P (1994) Distribution of catechol-O-methyltransferase enzyme in rat tissues. J Histochem Cytochem 42(8):1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Kaya E, Dervisoglu A, Eroglu C, Polat C, Sunbul M, Ozkan K (2005) Acute pancreatitis caused by leptospirosis: report of two cases. World J Gastroenterol 11(28):4447–4449

    Google Scholar 

  • Kavelaars A, Cobelens PM, Teunis MA, Heijnen CJ (2005) Changes in innate and acquired immune responses in mouse with targeted deletion of the dopamine transporter gene. J Neuroimmunol 161(1–2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Keahey HH, Boyd AE, Kunze DL (1989) Catecholamine modulation of calcium currents in clonal pancreatic beta-cells. Am J Phys 257(6 Pt 1):C1171–C1176

    Article  CAS  Google Scholar 

  • Kelly AC, Steyn LV, Kitzmann JP, Anderson MJ, Mueller KR, Hart NJ, Lynch RM, Papas KK, Limesand SW (2014) Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets. Xenotransplantation 21(4):385–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly AC, Camacho LE, Pendarvis K et al (2018) Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Mol Cell Endocrinol 473:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korner J, Cline GW, Slifstein M, Barba P, Rayat GR, Febres G, Leibel RL, Maffei A, Harris PE (2019) A role for foregut tyrosine metabolism in glucose tolerance. Mol Metab 23:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuka C, Sunagawa S, Ueda R et al (2015) A novel insulinotropic mechanism of whole grain-derived γ-oryzanol via the suppression of local dopamine D2 receptor signalling in mouse islet. Br J Pharmacol 172(18):4519–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci 12:390–402

    Article  CAS  PubMed  Google Scholar 

  • Lacey RJ, Chan SL, Cable HC, James RF, Perrett CW, Scarpello JH, Morgan NG (1996) Expression of alpha 2- and β-adrenoceptor subtypes in human islets of langerhans. J Endocrinol 148:531–543

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li GW, Zhang Y, Zhu JX (2018) Divergent distribution of dopamine receptors in tumor β-cell lines and. In Situ 39(6):877–822

    Google Scholar 

  • Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y (2020) D2-like receptors mediate dopamine-inhibited insulin secretion via ion channels in rat pancreatic β-cells. Front Endocrinol (Lausanne) 11:152

    Article  Google Scholar 

  • Maffei A, Segal AM, Alvarez-Perez JC, Garcia-Ocaña A, Harris PE (2015) Anti-incretin, anti-proliferative action of dopamine on β cells. Mol Endocrinol 29(4):542–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto P, Brown A, Dunbar JC (1984) Biogenic amine regulation of glucagon secretion. Acta Diabetol Lat 21(4):333–340

    Article  CAS  PubMed  Google Scholar 

  • Mezey E, Eisenhofer G, Harta G, Hansson S, Gould L, Hunyady B, Hoffman BJ (1996) A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci U S A 93(19):10377–10382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JK, Seim NB, Bomhoff GL, Geiger PC, Stanford JA (2011) Effects of unilateral nigrostriatal dopamine depletion on peripheral glucose tolerance and insulin signaling in middle aged rats. Neurosci Lett 504(3):219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JK, Zhang H, Gupte AA, Bomhoff GL, Stanford JA, Geiger PC (2008) Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 1240:185–195

    Google Scholar 

  • Mukherjee J, Yang ZY, Das MK, Brown T (1995) Fluorinated benzamide neuroleptics: III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl) methyl]-5-(3- [18F]fluoropropyl) -2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol 22:283–296

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee J, Shi B, Christian BT, Chattopadhyay S, Narayanan TK (2004) 11C-fallypride: radiosynthesis and preliminary evaluation of novel dopamine D2/D3 receptor PET radiotracer in nonhuman primate brain. Bioorg Med Chem 12:95–102

    Article  CAS  PubMed  Google Scholar 

  • Nagler J, Schriever SC, De Angelis M, Pfluger PT, Schramm KW (2018) Comprehensive analysis of nine monoamines and metabolites in small amounts of peripheral murine (C57Bl/6 J) tissues. Biomed Chromatogr 32(4). https://doi.org/10.1002/bmc.4151

  • Nakada N, Mikami T, Hana K et al (2014) Unique and selective expression of L-amino acid transporter 1 in human tissue as well as being an aspect of oncofetal protein. Histol Histopathol 29(2):217–227

    CAS  PubMed  Google Scholar 

  • Nissinen E, Lindén IB, Schultz E, Pohto P (1992) Biochemical and pharmacological properties of a peripherally acting catechol-O-methyltransferase inhibitor entacapone. Naunyn Schmiedeberg’s Arch Pharmacol 346(3):262–266

    Article  CAS  Google Scholar 

  • Oomori Y, Iuchi H, Ishikawa K, Satoh Y, Ono K (1994) Immunocytochemical study of tyrosine hydroxylase and dopamine β-hydroxylase immunoreactivities in the rat pancreas. Histochemistry 101(5):313–323

    Article  CAS  PubMed  Google Scholar 

  • Papa I, Saliba D, Ponzoni M, Bustamante S, Canete PF, Gonzalez-Figueroa P, McNamara HA, Valvo S, Grimbaldeston M, Sweet RA, Vohra H, Cockburn IA, Meyer-Hermann M, Dustin ML, Doglioni C, Vinuesa CG (2017) TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547(7663):318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecic S, Milosavic N, Rayat G, Maffei A, Harris PE (2019) A novel optical tracer for VMAT2 applied to live cell measurements of vesicle maturation in cultured human β-cells. Sci Rep 9(1):5403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persson-Sjögren S, Forsgren S, Täljedal IB (2002) Tyrosine hydroxylase in mouse pancreatic islet cells, in situ and after syngeneic transplantation to kidney. Histol Histopathol 17(1):113–121

    PubMed  Google Scholar 

  • Pijl H, Ohashi S, Matsuda M, Miyazaki Y, Mahankali A, Kumar V, Pipek R, Iozzo P, Lancaster JL, Cincotta AH, DeFronzo RA (2000) Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care 23(8):1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Prasanna Kumar HR, Gowdappa HB, Hosmani T, Urs T (2018) Exocrine dysfunction correlates with endocrinal impairment of pancreas in type 2 diabetes mellitus. Indian J Endocrinol Metab 22(1):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran X, Yang Y, Meng Y, Li Y, Zhou L, Wang Z, Zhu J (2019) Distribution of D1 and D2 receptor- immunoreactive neurons in the paraventricular nucleus of the hypothalamus in the rat. J Chem Neuroanat 98:97–103

    Article  CAS  PubMed  Google Scholar 

  • Rosati G, Maioli M, Aiello I, Farris A, Agnetti V (1976) Effects of long-term L-dopa therapy on carbohydrate metabolism in patients with Parkinson’s disease. Eur Neurol 14(3):229–239

    Article  CAS  PubMed  Google Scholar 

  • Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P (2005) Dopamine D2-like receptors are expressed in pancreatic β cells and mediate inhibition of insulin secretion. J Biol Chem 280(44):36824–36832

    Article  PubMed  CAS  Google Scholar 

  • Sandyk R (1993) The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci 69:125–130

    Article  CAS  PubMed  Google Scholar 

  • Schafer MK, Hartwig NR, Kalmbach N, Klietz M, Anlauf M, Eiden LE, Weihe E (2013) Species-specific vesicular monoamine transporter 2 (VMAT2) expression in mammalian pancreatic β cells: implications for optimising radioligand-based human β cell mass (BCM) imaging in animal models. Diabetologia 56(5):1047–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwetz TA, Ustione A, Piston DW (2013) Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. Am J Physiol Endocrinol Metab 304(2):E211–E221

    Article  CAS  PubMed  Google Scholar 

  • Shankar E, Santhosh KT, Paulose CS (2006) Dopaminergic regulation of glucose-induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro. IUBMB Life 58(3):157–163

    Article  CAS  PubMed  Google Scholar 

  • Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE (2012) Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol 26(10):1757–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirtori CR, Bolme P, Azarnoff DL (1972) Metabolic responses to acute and chronic L-dopa administration in patients with parkinsonism. N Engl J Med 287:729–733

    Article  CAS  PubMed  Google Scholar 

  • Sjoholm A (1991) A-adrenergic inhibition of rat pancreatic b-cell replication and insulin secretion is mediated through a pertussis toxin-sensitive G-protein regulating islet cAMP content. Biochem Biophys Res Commun 180(1):152–155

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zheng LF, Zhang XL, Feng XY, Fan RF, Sun L, Hong F, Zhang Y, Zhu JX (2014) Upregulation of β1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson’s disease. Transl Res 164(1):22–31

    Google Scholar 

  • Somvanshi RK, Jhajj A, Heer M, Kumar U (2018) Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mouse. Biochim Biophys Acta Mol basis Dis 1864(2):359–373

    Article  CAS  PubMed  Google Scholar 

  • Straub SG, Sharp GW (2012) Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 302(12):C1687–C1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ter Horst KW, Lammers NM, Trinko R, Opland DM, Figee M, Ackermans MT, Booij J, van den Munckhof P, Schuurman PR, Fliers E, Denys D, DiLeone RJ, la Fleur SE, Serlie MJ (2018) Striatal dopamine regulates systemic glucose metabolism in humans and mouse. Sci Transl Med 10(442):eaar3752

    Article  PubMed  CAS  Google Scholar 

  • Tirone TA, Norman MA, Moldovan S, DeMayo FJ, Wang XP, Brunicardi FC (2003) Pancreatic somatostatin inhibits insulin secretion via SSTR-5 in the isolated perfused mouse pancreas model. Pancreas 26(3):e67–e73

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Sumiyoshi T, Itoh H, Kurachi M (2007) Dopamine D1 and D2 receptors regulate extracellular lactate and glucose concentrations in the nucleus accumbens. Brain Res 1133(1):193–199

    Article  CAS  PubMed  Google Scholar 

  • Urano Y, Sakurai T, Ueda H, Ogasawara J, Sakurai T, Takei M, Izawa T (2004) Desensitization of the inhibitory effect of norepinephrine on insulin secretion from pancreatic islets of exercise-trained rats. Metabolism 53:1424–1432

    Article  CAS  PubMed  Google Scholar 

  • Ustione A, Piston DW (2012) Dopamine synthesis and D3 receptor activation in pancreatic β-cells regulates insulin secretion and intracellular Ca2+ oscillations. Mol Endocrinol 26(11):1928–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ustione A, Piston DW, Harris PE (2013) Mini review: dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 27(8):1198–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beek AP, de Heide LJ, van Ginkel B, Slart RH, van der Horst-Schrivers AN, Boellaard R, de Vries EG, Noordzij W, Glaudemans AW (2017) Pancreatic uptake by 18F-FDOPA PET/CT in patients with hypoglycemia after gastric bypass surgery compared with controls with or without carbidopa pretreatment. Clin Nucl Med 42(3):163–168

    Article  PubMed  Google Scholar 

  • Vayssette J, Vaysse N, Ribet A (1986) Dopamine receptors in pancreatic acinar cells from dog. Eur J Pharmacol 122(3):321–328

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76

    Article  CAS  PubMed  Google Scholar 

  • Wimalasena K (2011) Vesicular monoamine transporters: structure-function, pharmacology and medicinal chemistry. Med Res Rev 31(4):483–519

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Shang J, Feng Y et al (2008) Identification of glucose-dependant insulin secretion targets in pancreatic cells by combining defined-mechanism compound library screening and siRNA gene silencing. J Biomol Screen 13:128–134

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1–2):62–73

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-W, Hsieh T-F, Li C-I, Liu C-S, Lin W-Y, Chiang J-H, Li T-C, Lin C-C (2017) Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine 96(3):e5921

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Yang D, Han Y, Wang W, Wang N, Yang J, Zeng C (2016) Dopamine D1-like receptors suppress the proliferation of macrophages induced by Ox-LDL. Cell Physiol Biochem 38(1):415–426

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Peng XG, Liu CC, Liu H, Lu Y (2017) Low-dose dopamine reduces inlfammatory factors of acute pancreatitis in rats. Hepatobiliary Pancreat Dis Int 6:646–649

    Google Scholar 

  • Zhao Y, Fang Q, Straub SG, Lindau M, Sharp GW (2010) Noradrenaline inhibits exocytosis via the G protein βγ subunit and refilling of the readily releasable granule pool via the α(i1/2) subunit. J Physiol 588(Pt 18):3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Leonie FW, Holmseth S, Guo C, Urs VB, Li Y, Lehre A-C, Knut PL, Niels CD (2014) Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mouse. J Biol Chem 289(3):1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Ran XR, Hong F, Li GW, Zhu JX (2019) Downregulated dopamine receptor 2 and upregulated corticotrophin releasing hormone in the paraventricular nucleus are correlated with decreased glucose tolerance in rats with bilateral substantia nigra lesions. Front Neurosci 13:751

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xia Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, F., Li, GW., Liu, S., Zhang, Y., Feng, XY., Zhu, JX. (2021). Dopamine in the Pancreas. In: Zhu, JX. (eds) Dopamine in the Gut. Springer, Singapore. https://doi.org/10.1007/978-981-33-6586-5_6

Download citation

Publish with us

Policies and ethics