Skip to main content

Thermal Energy Storage for Solar Energy

  • Chapter
  • First Online:
Fundamentals and Innovations in Solar Energy

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

The abundant presence of solar energy on the earth’s surface makes it a viable source for many engineering applications. The solar energy systems have enormous potential to provide a clean and eco-friendly solution to atmospheric degradation. The diurnal and intermittent nature of solar energy is one of the major challenges in the utilization of solar energy for various applications. The thermal energy storage system helps to minimize the intermittency of solar energy and demand–supply mismatch as well as improve the performance of solar energy systems. Hence, it is indispensable to have a cost-effective, efficient thermal energy storage technology for the prudent utilization of solar energy. In this chapter, the multidimensional efforts have been made to explain the various thermal energy storage technologies used in diverse applications of solar energy. An in-depth discussion has been provided on the technological evolution of sensible, latent, and thermochemical energy storage systems. The various types of thermal energy storage materials and their thermophysical properties are provided for a wide range of temperatures. In this study, numerous solar applications of thermal energy storage technologies are discussed extensively, explaining their design and performance parameters. The description of recent developments of thermal energy storage technologies has also been included to represent the current trend of research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. Sustainability (Switzerland) 10(1). https://doi.org/10.3390/su10010191

  2. Xu C, Li X, Wang Z, He Y, Bai F (2013) Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system. Appl Therm Eng 57(1–2):69–80. https://doi.org/10.1016/j.applthermaleng.2013.03.052

    Article  Google Scholar 

  3. Khare S, Dell’Amico M, Knight C, McGarry S (2013) Selection of materials for high temperature sensible energy storage. Sol Energy Mater Sol Cells 115:114–122. https://doi.org/10.1016/j.solmat.2013.03.009

    Article  Google Scholar 

  4. Hussain F, Rahman MZ, Nair A (2020) Chapter 6 Energy storage technologies. Elsevier Inc

    Google Scholar 

  5. Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew Sustain Energ Rev 14(1):31–55. https://doi.org/10.1016/j.rser.2009.07.035

    Article  Google Scholar 

  6. Tiskatine R, Oaddi R, Ait El Cadi R, Bazgaou A, Bouirden L, Aharoune A, Ihlal A (2017) Suitability and characteristics of rocks for sensible heat storage in CSP plants. Solar Energ Mater Solar Cell 169:245–257. https://doi.org/10.1016/j.solmat.2017.05.033

  7. Suresh C, Saini RP (2020) Review on solar thermal energy storage technologies and their geometrical configurations. Int J Energ Res 44(6):4163–4195. https://doi.org/10.1002/er.5143

    Article  Google Scholar 

  8. Calvet N, Gomez JC, Faik A, Roddatis VV, Meffre A, Glatzmaier GC, Doppiu S, Py X (2013) Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system. Appl Energ 109:387–393. https://doi.org/10.1016/j.apenergy.2012.12.078

    Article  Google Scholar 

  9. Kenda ES, N’Tsoukpoe KE, Ouédraogo IWK, Coulibaly Y, Py X, Ouédraogo FMAW (2017) Jatropha curcas crude oil as heat transfer fluid or thermal energy storage material for concentrating solar power plants. Energ Sustain Dev 40:59–67. https://doi.org/10.1016/j.esd.2017.07.003

    Article  Google Scholar 

  10. Goods SH, Bradshaw RW (2004) Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts. J Mater Eng Perform 13(1):78–87. https://doi.org/10.1361/10599490417542

    Article  Google Scholar 

  11. Fernández AG, Ushak S, Galleguillos H, Pérez FJ (2014) Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl Energ 119(3):131–140. https://doi.org/10.1016/j.apenergy.2013.12.061

    Article  Google Scholar 

  12. González-Roubaud E, Pérez-Osorio D, Prieto C (2017) Review of commercial thermal energy storage in concentrated solar power plants: Steam versus molten salts. Renew and Sustain Energ Rev 80:133–148. https://doi.org/10.1016/j.rser.2017.05.084

  13. Baharoon DA, Rahman HA, Omar WZW, Fadhl SO (2015) Historical development of concentrating solar power technologies to generate clean electricity efficiently―a review. Renew Sustain Energ Rev 41:996–1027. https://doi.org/10.1016/j.rser.2014.09.008

    Article  Google Scholar 

  14. Brosseau D, Kelton JW, Ray D, Edgar M, Chisman K, Emms B (2005) Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. J Solar Energ Eng Trans ASME 127(1):109–116. https://doi.org/10.1115/1.1824107

    Article  Google Scholar 

  15. Reddy KS, Jawahar V, Sivakumar S, Mallick TK (2017) Performance investigation of single-tank thermocline storage systems for CSP plants. Sol Energ 144:740–749. https://doi.org/10.1016/j.solener.2017.02.012

    Article  Google Scholar 

  16. Skumanich A (2020) CSP: Developments in heat transfer and storage materials—renewable energy focus. http://www.renewableenergyfocus.com/view/17095/csp-developments-in-heat-transfer-and-storage-materials/. Accessed 24 August 2020

  17. Steinmann WD, Eck M (2006) Buffer storage for direct steam generation. Sol Energ 80(10):1277–1282. https://doi.org/10.1016/j.solener.2005.05.013

    Article  Google Scholar 

  18. Solucar (2006) 10 MW solar thermal power plant for southern Spain. [Online]. Available http://ec.europa.eu/energy/res/sectors/doc/csp/ps10_final_report.pdf

  19. Schmidt T, Mangold D, Müller-Steinhagen H (2004) Central solar heating plants with seasonal storage in Germany. Sol Energ 76(1–3):165–174. https://doi.org/10.1016/j.solener.2003.07.025

    Article  Google Scholar 

  20. Hesaraki A, Holmberg S, Haghighat F (2015) Seasonal thermal energy storage with heat pumps and low temperatures in building projects—a comparative review. Renew Sustain Energ Rev 43:1199–1213. https://doi.org/10.1016/j.rser.2014.12.002

    Article  Google Scholar 

  21. Kurt H, Halici F, Binark AK (2000) Solar pond conception—experimental and theoretical studies. Energ Convers Manag 41(9):939–951. https://doi.org/10.1016/S0196-8904(99)00147-8

    Article  Google Scholar 

  22. Kumar A, Kishore VVN (1999) Construction and operational experience of a 6000 M2 solar pond at kutch, India. Sol Energ 65(4):237–249. https://doi.org/10.1016/S0038-092X(98)00134-0

    Article  Google Scholar 

  23. Appadurai M, Velmurugan V (2015) Performance analysis of fin type solar still integrated with fin type mini solar pond. Sustain Energ Technol Assess 9:30–36. https://doi.org/10.1016/j.seta.2014.11.001

    Article  Google Scholar 

  24. Singh B, Gomes J, Tan L, Date A, Akbarzadeh A (2012) Small scale power generation using low grade heat from solar pond. 49:50–56. https://doi.org/10.1016/j.proeng.2012.10.111

  25. Ramadan MRI, Khallaf AM (2011) Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP). DES 280(1–3):183–190. https://doi.org/10.1016/j.desal.2011.07.004

    Article  Google Scholar 

  26. Ramadan MRI, Salem N (2008) Thermal performance of a single-basin solar still integrated with a shallow solar pond. 49:2839–2848. https://doi.org/10.1016/j.enconman.2008.03.002

  27. Fleischer AS (2015) Thermal energy storage using phase change materials. 9783319209210

    Google Scholar 

  28. Alva G, Lin Y, Fang G (2018) An overview of thermal energy storage systems. Energy 144:341–378. https://doi.org/10.1016/j.energy.2017.12.037

    Article  Google Scholar 

  29. Mehling LF, Cabeza H (2008) Heat and cold storage with PCM: an up to date introduction into basics and applications. Springer, Heidelberg, Berlin

    Google Scholar 

  30. Alva G, Liu L, Huang X, Fang G (2017) Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energ Rev 68:693–706. https://doi.org/10.1016/j.rser.2016.10.021

  31. Jankowski NR, Mccluskey FP (2014) A review of phase change materials for vehicle component thermal buffering. Appl Energ 113:1525–1561. https://doi.org/10.1016/j.apenergy.2013.08.026

    Article  Google Scholar 

  32. Pereira da Cunha J, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials—a review. Appl Energ 177:227–238. https://doi.org/10.1016/j.apenergy.2016.05.097

    Article  Google Scholar 

  33. Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energ Rev 15(3):1675–1695. https://doi.org/10.1016/j.rser.2010.11.018

    Article  Google Scholar 

  34. Huang MJ, Eames PC, Norton B (2004) Thermal regulation of building-integrated photovoltaics using phase change materials. Int J Heat Mass Transf 47(12–13):2715–2733. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015

    Article  Google Scholar 

  35. Su D, Jia Y, Alva G, Liu L, Fang G (2017) Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energ Convers Manag 131:79–89. https://doi.org/10.1016/j.enconman.2016.11.002

    Article  Google Scholar 

  36. El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS (2009) Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energ 86(7–8):1187–1195. https://doi.org/10.1016/j.apenergy.2008.10.014

    Article  Google Scholar 

  37. Sharma SD, Iwata T, Kitano H, Sagara K (2005) Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energ 78(3):416–426. https://doi.org/10.1016/j.solener.2004.08.001

    Article  Google Scholar 

  38. Regin AF, Solanki SC, Saini JS (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energ Rev 12(9):2438–2458. https://doi.org/10.1016/j.rser.2007.06.009

    Article  Google Scholar 

  39. Karthikeyan S, Ravikumar Solomon G, Kumaresan V, Velraj R (2014) Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energ Convers Manag 78:74–80. https://doi.org/10.1016/j.enconman.2013.10.042

  40. Kumaresan G, Vigneswaran VS, Esakkimuthu S, Velraj R (2016) Performance assessment of a solar domestic cooking unit integrated with thermal energy storage system. J Energ Storage 6:70–79. https://doi.org/10.1016/j.est.2016.03.002

    Article  Google Scholar 

  41. Pirasaci T, Goswami DY (2016) Influence of design on performance of a latent heat storage system for a direct steam generation power plant. Appl Energ 162:644–652. https://doi.org/10.1016/j.apenergy.2015.10.105

    Article  Google Scholar 

  42. Abedin AH (2011) A critical review of thermochemical energy storage systems. Open Renew Energ J 4(1):42–46. https://doi.org/10.2174/1876387101004010042

    Article  Google Scholar 

  43. Anggraini AR, Oliver J (2019) 済無No Title No Title. J Chem Inf Model 53(9):1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  44. Garg HP, Mullick SC, Bhargava AK (1985) Solar thermal energy storage. Sol Therm Energ Storage

    Google Scholar 

  45. Dunn R, Lovegrove K, Burgess G (2012) A review of ammonia-based thermochemical energy storage for concentrating solar power. Proc IEEE 100(2):391–400. https://doi.org/10.1109/JPROC.2011.2166529

    Article  Google Scholar 

  46. Wentworth WE, Chen E (1976) Simple thermal decomposition reactions for storage of solar thermal energy. Sol Energ 18(3):205–214. https://doi.org/10.1016/0038-092X(76)90019-0

    Article  Google Scholar 

  47. Kato Y, Harada N, Yoshizawa Y (1999) Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes. Appl Therm Eng 19(3):239–254. https://doi.org/10.1016/s1359-4311(98)00049-0

    Article  Google Scholar 

  48. Kato Y, Yamada M, Kanie T, Yoshizawa Y (2001) Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors. Nucl Eng Des 210(1–3):1–8. https://doi.org/10.1016/S0029-5493(01)00421-6

    Article  Google Scholar 

  49. André L, Abanades S, Flamant G (2016) Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew Sustain Energ Rev 64:703–715. https://doi.org/10.1016/j.rser.2016.06.043

    Article  Google Scholar 

  50. Caldwell RT, McDonald JW, Pietsch A (1965) Solar-energy receiver with lithium-hydride heat storage. Sol Energ 9(1):48–60. https://doi.org/10.1016/0038-092X(65)90161-1

    Article  Google Scholar 

  51. Sheppard DA, Paskevicius M, Humphries TD, Felderhoff M, Capurso G, Bellosta von Colbe J, Dornheim M, Klassen T, Ward PA, Teprovich JA, Corgnale C, Zidan R, Grant DM, Buckley CE (2016) Metal hydrides for concentrating solar thermal power energy storage. Appl Phys A Mater Sci Process 122. https://doi.org/10.1007/s00339-016-9825-0

  52. Paskevicius M, Sheppard DA, Williamson K, Buckley CE (2015) Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 88:469–477. https://doi.org/10.1016/j.energy.2015.05.068

    Article  Google Scholar 

  53. Kato Y, Yamashita N, Kobayashi K, Yoshizawa Y (1996) Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl Therm Eng 16(11):853–862. https://doi.org/10.1016/1359-4311(96)00009-9

    Article  Google Scholar 

  54. Fedders H, Harth R, Höhlein B (1975) Experiments for combining nuclear heat with the methane steam-reforming process. Nucl Eng Des 34(1):119–127. https://doi.org/10.1016/0029-5493(75)90161-2

    Article  Google Scholar 

  55. Pelay U, Luo L, Fan Y, Stitou D, Rood M (2017) Thermal energy storage systems for concentrated solar power plants. Renew Sustain Energ Rev 79(January):82–100. https://doi.org/10.1016/j.rser.2017.03.139

    Article  Google Scholar 

  56. Fahim MA, Ford JD (1983) Energy storage using the BaO-BaO reaction cycle. Chem Eng J 27(1):21–28

    Google Scholar 

  57. Bowrey RG, Jutsen J (1978) Energy storage using the reversible oxidation of barium oxide. Sol Energ 21(6):523–525. https://doi.org/10.1016/0038-092X(78)90078-6

    Article  Google Scholar 

  58. André L, Abanades S, Cassayre L (2017) High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides. J Solid State Chem 253(March):6–14. https://doi.org/10.1016/j.jssc.2017.05.015

    Article  Google Scholar 

  59. Home—system advisor model (SAM). https://sam.nrel.gov/. Accessed 08 July 2020

  60. Nithyanandam K, Pitchumani R (2014) Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64:793–810. https://doi.org/10.1016/j.energy.2013.10.095

    Article  Google Scholar 

  61. Crespo A, Barreneche C, Ibarra M, Platzer W (2018) Latent thermal energy storage for solar process heat applications at medium-high temperatures—a review. Solar Energ 192:3–34. https://doi.org/10.1016/j.solener.2018.06.101

  62. Saxena R, Rakshit D, Kaushik SC (2019) Phase change material (PCM) incorporated bricks for energy conservation in composite climate: a sustainable building solution. Sol Energ 183:276–284. https://doi.org/10.1016/j.solener.2019.03.035

    Article  Google Scholar 

  63. Saxena R, Rakshit D, Kaushik SC (2020) Experimental assessment of phase change material (PCM) embedded bricks for passive conditioning in buildings. Renew Energ 149:587–599. https://doi.org/10.1016/j.renene.2019.12.081

    Article  Google Scholar 

  64. Zauner C, Hengstberger F, Mörzinger B, Hofmann R, Walter H (2017) Experimental characterization and simulation of a hybrid sensible-latent heat storage. Appl Energ 189:506–519. https://doi.org/10.1016/j.apenergy.2016.12.079

    Article  Google Scholar 

  65. Okello D, Foong CW, Nydal OJ, Banda EJK (2014) An experimental investigation on the combined use of phase change material and rock particles for high temperature (∼350 °C) heat storage. Energ Convers Manag 79:1–8. https://doi.org/10.1016/j.enconman.2013.11.039

    Article  Google Scholar 

  66. Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf 48(13):2759–2770. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.032

    Article  MATH  Google Scholar 

  67. Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TMI (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280. https://doi.org/10.1016/j.applthermaleng.2016.10.085

    Article  Google Scholar 

  68. Cao Y, Faghri A (1991) Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Num Heat Transf Part A Appl 18(4):483–502. https://doi.org/10.1080/10407789008944804

    Article  Google Scholar 

  69. Fukai J, Kanou M, Kodama Y, Miyatake O (2000) Thermal conductivity enhancement of energy storage media using carbon fibers. Energ Convers Manag 41(14):1543–1556. https://doi.org/10.1016/S0196-8904(99)00166-1

    Article  Google Scholar 

  70. Saxena R, Dwivedi C, Dutta V, Kaushik SC, Rakshit D (2020) Nano-enhanced PCMs for low-temperature thermal energy storage systems and passive conditioning applications. Clean Technol Environ Pol. 0123456789. https://doi.org/10.1007/s10098-020-01854-7

  71. Singh RP, Kaushik SC, Rakshit D (2018) Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates. Energ Convers Manag 171(April):825–838. https://doi.org/10.1016/j.enconman.2018.06.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, S., Dubey, S.K., Kumar, K.R., Rakshit, D. (2021). Thermal Energy Storage for Solar Energy. In: Singh, S.N., Tiwari, P., Tiwari, S. (eds) Fundamentals and Innovations in Solar Energy. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6456-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6456-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6455-4

  • Online ISBN: 978-981-33-6456-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics