Skip to main content

Phase Change Materials and Its Applications

  • Chapter
  • First Online:
Fundamentals and Innovations in Solar Energy

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

A "phase" is an important physical identity of any material. Pure materials undergo phase transition when the heat is absorbed or released at a constant temperature known as melting or boiling point temperature. This phase transition is associated with "latent heat", which researchers are trying to exploit in multiple ways for different applications. The temperature range for these applications is such that selected materials undergo a phase change. Thus, their latent heat comes into play. There are various applications of these phase change materials (PCMs) from low-temperature passive heating/cooling and thermal management to high-temperature storage for solar thermal systems. PCM implementation requires knowledge of their types, properties, thermal characterization procedure, and property enhancement techniques, to map their suitability for a particular application. An assessment follows their implementation. There are different models for simulating the phase change process for different configurations, for assessing the impact of PCM incorporation. PCM caters to a vast arena of thermal applications and is used for either to enhance thermal cooling performance or to enhance thermal efficiency by wisely exploiting the energy storage potential. Here, we present mathematical modeling and different computational approaches for studying PCM-based systems. The general and most preferred practices in PCMs are discussed along with the different approaches of handling computational grids. Various methods based on discerning the energy equations are discussed along with phase field and volume of fluid methods. Also, the sophisticated commercial/research-based tools available for modeling the phase change materials are detailed. Such a comprehensive overview will be helpful for researchers/engineers looking to realize PCM, especially for energy and building applications.The later part of the chapter provides a comprehensive review of PCMs, followed by a detailed description of various applications and research prospects. This study discusses both heating and cooling applications of PCMs. PCM implementation in buildings can result in energy savings of up to 30%. PCMs application for thermal regulation of batteries, electronic circuits, and photovoltaic module are also discussed. Heat transfer enhancement techniques required to increase PCM dispatch ability, with suitable case studies, have been discussed in detail. The application of PCM in wearable devices to sustain extreme temperatures is still uncharted and can prove to be handy for thermal management and providing sustainable solutions. PCM implementation for solar thermal applications as high-temperature storage material has been discussed in this present study. In summary, this chapter provides a holistic review of different PCM applications and their modeling. It highlights the research, required to be carried out to overcome the shortcomings of PCM implementation to form a feasible solution for various problems. This study also highlights the importance of PCMs in energy conservation, thus contributing to a reduction in CO2 emissions and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Specific heat capacity, kJ/kg K

Φ :

Nano-fluid volume fraction

D :

Equivalent diameter, m

Nu:

Nusselt number

F :

Packing factor

Re:

Reynolds number

W :

Width, m

Pe:

Pecklet number

h :

Convective heat transfer coefficient, W/m2 K

Pr:

Prandtl number

H :

Sensible enthalpy, J

k :

Thermal conductivity, W/m K

I :

Solar radiation intensity, W/m2

A :

Cross-sectional area

L :

Length, m

δ :

Thickness of the material

L f :

Latent heat of fusion, J

σ :

Stefan–Boltzman constant, W/(m2K4)

:

Mass flow rate, kg/s

ε :

Emissivity of glass

p :

Pressure, N/m2

t :

Time

s :

Liquid fraction

μ :

Viscosity of fluid

B:

Constant parameter

κ :

Boltzman constant

T :

Temperature, K

U :

Overall heat transfer coefficient, W/m2 K

u :

Horizontal component of the velocity, m/s

a :

Ambient

v :

Vertical component of the velocity, m/s

b:

Backplane

x :

Distance in flowing direction, m

c :

Solar cell

y :

Distance in normal direction, m

g:

Glass

α :

Absorption coefficient

p :

PCM layer

α t :

Thermal diffusivity, m2/s

ref:

Reference value at reference conditions

α mt :

Indicator function to mark different fluids

w :

Water

η :

Photovoltaic efficiency

f:

Fluid

β :

Temperature coefficient of PCM

c:

Coil tube through which fluid flows

β t :

Thermal expansion coefficient, 1/K

np:

Nano-particle

τ :

Transmission coefficient

bf:

Base fluid

γ(T):

Melt function

nf:

Nano-fluid

F`:

Flat plate collector efficiency factor

s:

Solid

ρ :

Density

l:

Liquid

V :

Volume

ref:

Reference value

References

  1. Zalba B, Marı́n JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283. https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  Google Scholar 

  2. Saxena R, Agarwal N, Rakshit D, Kaushik SC (2020) Suitability assessment and experimental characterization of phase change materials for energy conservation in Indian buildings. J Sol Energy Eng 142. https://doi.org/10.1115/1.4044568

  3. Mi X, Liu R, Cui H, Memon SA, Xing F, Lo Y (2016) Energy and economic analysis of building integrated with PCM in different cities of China. Appl Energy 175:324–336. https://doi.org/10.1016/J.APENERGY.2016.05.032

    Article  Google Scholar 

  4. Saxena R, Rakshit D, Kaushik SC (2020) Review on PCM application for cooling load reduction in Indian buildings. In: Solar energy-system, challenges and opportunites. pp 247–275

    Google Scholar 

  5. Singh RP, Xu H, Kaushik SC, Rakshit D, Romagnoli A (2019) Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material. Appl Therm Eng 151:176–190. https://doi.org/10.1016/J.APPLTHERMALENG.2019.01.072

    Article  Google Scholar 

  6. Khan A, Saikia P, Saxena R, Rakshit D, Saha S (2019) Microencapsulation of phase change material in water dispersible polymeric particles for thermoregulating rubber composites—a holistic approach. Int J Energy Res er.4925. https://doi.org/10.1002/er.4925

  7. Hoogendoorn CJ, Bart GCJ (1992) Performance and modelling of latent heat stores. Sol Energy 48:53–58. https://doi.org/10.1016/0038-092X(92)90176-B

    Article  Google Scholar 

  8. Singh RP, Xu H, Kaushik SC, Rakshit D, Romagnoli A (2019) Effective utilization of natural convection via novel fin design and influence of enhanced viscosity due to carbon nano-particles in a solar cooling thermal storage system. Sol Energy 183:105–119. https://doi.org/10.1016/j.solener.2019.03.005

    Article  Google Scholar 

  9. Singh RP, Kaushik SC, Rakshit D (2018) Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates. Energy Convers Manag 171:825–838. https://doi.org/10.1016/J.ENCONMAN.2018.06.037

    Article  Google Scholar 

  10. Pise AT, Waghmare AV, Talandage VG (2013) Heat transfer enhancement by using nanomaterial in phase change material for latent heat thermal energy. 2:360–366

    Google Scholar 

  11. Teng TP, Cheng CM, Cheng CP (2013) Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl Therm Eng 50:637–644. https://doi.org/10.1016/j.applthermaleng.2012.07.002

    Article  Google Scholar 

  12. Saxena R, Dwivedi C, Dutta V, Kaushik SC, Rakshit D (2020) Nano-enhanced PCMs for low-temperature thermal energy storage systems and passive conditioning applications. Clean Technol Environ Policy 1–8. https://doi.org/10.1007/s10098-020-01854-7

  13. Aguayo M, Das S, Maroli A, Kabay N, Mertens JCE, Rajan SD, Sant G, Chawla N, Neithalath N (2016) The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: experiments and finite element simulations. Cem Concr Compos 73:29–41. https://doi.org/10.1016/j.cemconcomp.2016.06.018

    Article  Google Scholar 

  14. Chang TC, Lee S, Fuh YK, Peng YC, Lin ZY (2017) PCM based heat sinks of paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl Therm Eng 112:1129–1136. https://doi.org/10.1016/j.applthermaleng.2016.11.010

    Article  Google Scholar 

  15. Lamé G, Clapeyron BP (1831) Mémoire sur la solidification par refroidissement d’un globe liquide. Ann. Chim. Phys. 47:1831

    Google Scholar 

  16. Stefan J (1889) Uber einige probleme der theorie der warmeletung. Sitzer. Wien. Akad. Math. Naturw. 98:473–484

    Google Scholar 

  17. Hunter LW, Kuttler JR (1989) The enthalpy method for heat conduction problems with moving boundaries. J Heat Transf 111:239–242. https://doi.org/10.1115/1.3250668

    Article  Google Scholar 

  18. Goyal P, Dutta A, Verma V, Thangamani I, Singh RK (2013) Enthalpy porosity method for CFD simulation of natural convection phenomenon for phase change problems in the molten pool and its importance during melting of solids. In: COMSOL conference, p 10

    Google Scholar 

  19. Voller VR (1990) Numerical heat transfer, part B: fundamentals: an international journal of computation and methodology fast implicit finite-difference method for the analysis of phase change problems. Numer Heat Transf 17:155–169. https://doi.org/10.1080/10407799508928838

    Article  Google Scholar 

  20. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 13:297–318. https://doi.org/10.1080/10407788808913615

    Article  Google Scholar 

  21. Augspurger M, Udaykumar HS (2016) A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device. Numer Heat Transf Part B Fundam 69:179–196. https://doi.org/10.1080/10407790.2015.1097106

    Article  Google Scholar 

  22. Sheikholeslami M (2018) Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq 259:424–438. https://doi.org/10.1016/j.molliq.2018.03.006

    Article  Google Scholar 

  23. Chakraborty PR (2017) Enthalpy porosity model for melting and solidification of pure-substances with large difference in phase specific heats. Int Commun Heat Mass Transf 81:183–189. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.023

    Article  Google Scholar 

  24. Sweidan AH, Heider Y, Markert B (2020) Modeling of PCM-based enhanced latent heat storage systems using a phase-field-porous media approach. Contin Mech Thermodyn 32:861–882. https://doi.org/10.1007/s00161-019-00764-4

    Article  MathSciNet  Google Scholar 

  25. Voller VR, Prakash C (1978) A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems. Int J Heat Mass Transf 30:1709–1719

    Article  Google Scholar 

  26. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  27. Al-Saadi SN, Zhai Z (2013) Modeling phase change materials embedded in building enclosure: a review. Renew Sustain Energy Rev 21:659–673. https://doi.org/10.1016/j.rser.2013.01.024

    Article  Google Scholar 

  28. Tabares-Velasco PC, Christensen C, Bianchi M (2012) Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build Environ 54:186–196. https://doi.org/10.1016/j.buildenv.2012.02.019

    Article  Google Scholar 

  29. Kuznik F, Virgone J, Johannes K (2010) Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM

    Google Scholar 

  30. Heim D, Clarke JA (2004) Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r. Energy Build 36:795–805. https://doi.org/10.1016/j.enbuild.2004.01.004

    Article  Google Scholar 

  31. Saxena R, Rakshit D, Kaushik SC (2018) Experimental assessment of characterised PCMs for thermal management of buildings in tropical composite climate. In: 4th world congress on mechanical, chemical, and material engineering (MCM’18)

    Google Scholar 

  32. Navarro L, Solé A, Martín M, Barreneche C, Olivieri L, Tenorio JA, Cabeza LF (2019) Benchmarking of useful phase change materials for a building application. Energy Build 182:45–50. https://doi.org/10.1016/j.enbuild.2018.10.005

    Article  Google Scholar 

  33. Kaushik SC, Sodha MS, Bhardwaj SC, Kaushik ND (1981) Periodic heat transfer and load levelling of heat flux through a PCCM thermal storage wall/roof in an air-conditioned building. Build Environ 16:99–107. https://doi.org/10.1016/0360-1323(81)90026-3

    Article  Google Scholar 

  34. Hadjieva M, Stoykov R, Filipova T (2000) Composite salt-hydrate concrete system for building energy storage. Renew Energy 19:111–115. https://doi.org/10.1016/S0960-1481(99)00024-5

    Article  Google Scholar 

  35. Ismail KAR, Castro JNC (1997) PCM thermal insulation in buildings. Int J Energy Res 21:1281–1296. https://doi.org/10.1002/(SICI)1099-114X(199711)21:14%3c1281:AID-ER322%3e3.0.CO;2-P

    Article  Google Scholar 

  36. Stritih U (2003) Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Build 35:1097–1104. https://doi.org/10.1016/j.enbuild.2003.07.001

    Article  Google Scholar 

  37. Mehling H, Cabeza LF (2008) Applications for heating and cooling in buildings. Heat and cold storage with PCM. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 217–295

    Chapter  Google Scholar 

  38. Scalat S, Bann D, Hawes D, Paris J, Haghighata F, Feldman D (1996) Full scale thermal testing of latent heat storage in wallboard. Sol Energy Mater Sol Cells 44:49–61

    Article  Google Scholar 

  39. Pasupathy A, Athanasius L, Velraj R, Seeniraj RV (2008) Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Appl Therm Eng 28:556–565. https://doi.org/10.1016/j.applthermaleng.2007.04.016

    Article  Google Scholar 

  40. Kant K, Shukla A, Sharma A (2017) Heat transfer studies of building brick containing phase change materials. Sol Energy 155:1233–1242. https://doi.org/10.1016/j.solener.2017.07.072

    Article  Google Scholar 

  41. Saxena R, Rakshit D, Kaushik SC (2020) Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings. Renew Energy 149:587–599. https://doi.org/10.1016/j.renene.2019.12.081

    Article  Google Scholar 

  42. Saxena R, Biplab K, Rakshit D (2018) Quantitative assessment of phase change material utilization for building cooling load abatement in composite climatic condition. J Sol Energy Eng Trans ASME 140. https://doi.org/10.1115/1.4038047

  43. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, fourth. Wiley, Hoboken

    Book  Google Scholar 

  44. Saikia P, Azad AS, Rakshit D (2018) Thermodynamic analysis of directionally influenced phase change material embedded building walls. Int J Therm Sci 126:105–117. https://doi.org/10.1016/j.ijthermalsci.2017.12.029

    Article  Google Scholar 

  45. Nghana B, Tariku F (2016) Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Build Environ 99:221–238. https://doi.org/10.1016/j.buildenv.2016.01.023

    Article  Google Scholar 

  46. Baniassadi A, Sajadi B, Amidpour M, Noori N (2016) Economic optimization of PCM and insulation layer thickness in residential buildings. Sustain Energy Technol Assessments 14:92–99. https://doi.org/10.1016/j.seta.2016.01.008

    Article  Google Scholar 

  47. Ascione F, Bianco N, De Masi RF, De’rossi F, Vanoli GP (2014) Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season. https://doi.org/10.1016/j.apenergy.2013.08.045

  48. Han Y, Taylor JE (2016) Simulating the inter-building effect on energy consumption from embedding phase change materials in building envelopes. Sustain Cities Soc 27:287–295. https://doi.org/10.1016/j.scs.2016.03.001

    Article  Google Scholar 

  49. Castell A, Menoufi K, de Gracia A, Rincón L, Boer D, Cabeza LF (2013) Life cycle assessment of alveolar brick construction system incorporating phase change materials (PCMs). Appl Energy 101:600–608. https://doi.org/10.1016/j.apenergy.2012.06.066

    Article  Google Scholar 

  50. Zhang C, Chen Y, Wu L, Shi M (2011) Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy Build 43:3514–3520. https://doi.org/10.1016/j.enbuild.2011.09.028

    Article  Google Scholar 

  51. Li L, Yu H, Liu R (2017) Research on composite-phase change materials (PCMs)-bricks in the west wall of room-scale cubicle: mid-season and summer day cases. Build Environ 123:494–503. https://doi.org/10.1016/j.buildenv.2017.07.019

    Article  Google Scholar 

  52. El Omari K, Le Guer Y, Bruel P (2016) Analysis of micro-dispersed PCM-composite boards behavior in a building’s wall for different seasons. doi:10.1016/j.jobe.2016.07.013

    Google Scholar 

  53. Ryms M, Klugmann-Radziemska E (2019) Possibilities and benefits of a new method of modifying conventional building materials with phase-change materials (PCMs). Constr Build Mater 211:1013–1024. https://doi.org/10.1016/j.conbuildmat.2019.03.277

    Article  Google Scholar 

  54. Bontemps A, Ahmad M, Johannès K, Sallée H (2011) Experimental and modelling study of twin cells with latent heat storage walls. Energy Build 43:2456–2461. https://doi.org/10.1016/J.ENBUILD.2011.05.030

    Article  Google Scholar 

  55. Guarino F, Athienitis A, Cellura M, Bastien D (2017) PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates. Appl Energy 185:95–106. https://doi.org/10.1016/J.APENERGY.2016.10.046

    Article  Google Scholar 

  56. Dabiri S, Mehrpooya M, Nezhad EG (2018) Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics. Energy 159:160–171. https://doi.org/10.1016/j.energy.2018.06.074

    Article  Google Scholar 

  57. Navarro L, de Gracia A, Colclough S, Browne M, McCormack SJ, Griffiths P, Cabeza LF (2016) Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems. Renew Energy 88:526–547. https://doi.org/10.1016/j.renene.2015.11.040

    Article  Google Scholar 

  58. Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307. https://doi.org/10.1016/j.apenergy.2015.09.016

    Article  Google Scholar 

  59. Lo Brano V, Ciulla G, Piacentino A, Cardona F (2013) On the efficacy of PCM to shave peak temperature of crystalline photovoltaic panels: an FDM model and field validation. Energies 6:6188–6210. https://doi.org/10.3390/en6126188

    Article  Google Scholar 

  60. Indartono YS, Suwono A, Pratama FY (2016) Improving photovoltaics performance by using yellow petroleum jelly as phase change material. Int J Low-Carbon Technol 11:333–337. https://doi.org/10.1093/ijlct/ctu033

    Article  Google Scholar 

  61. Abdelrazik AS, Al-Sulaiman FA, Saidur R (2020) Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems. Energy Convers Manag 205:112449. https://doi.org/10.1016/j.enconman.2019.112449

    Article  Google Scholar 

  62. Fayaz H, Rahim NA, Hasanuzzaman M, Rivai A, Nasrin R (2019) Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Sol Energy 179:135–150. https://doi.org/10.1016/j.solener.2018.12.057

    Article  Google Scholar 

  63. Al-Waeli AHA, Chaichan MT, Sopian K, Kazem HA, Mahood HB, Khadom AA (2019) Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol Energy 177:178–191. https://doi.org/10.1016/j.solener.2018.11.016

    Article  Google Scholar 

  64. Saxena R, Rakshit D, Kaushik SC (2018) Experimental assessment of characterised PCMs for thermal management of buildings in tropical composite climate. In: MCM2018. Avestia

    Google Scholar 

  65. Pereira Da Cunha J, Eames P (2017) Phase change materials to meet domestic hot water demand in the UK—a numerical study. Avestia Publ J Fluid Flow Heat Mass Transf 4. https://doi.org/10.11159/jffhmt.2017.002

  66. Harikrishnan S, Kalaiselvam S (2013) Experimental investigation of solidification and melting characteristics of nanofluid as PCM for solar water heating systems. 3:628–635

    Google Scholar 

  67. Verma A, Shashidhara S, Rakshit D (2019) A comparative study on battery thermal management using phase change material (PCM). Therm Sci Eng Prog 11:74–83. https://doi.org/10.1016/j.tsep.2019.03.003

    Article  Google Scholar 

  68. Rangappa R, Rajoo S, Samin PM, Rajesha S (2020) Compactness analysis of PCM-based cooling systems for lithium battery-operated vehicles. Int J Energy Environ Eng 11:247–264. https://doi.org/10.1007/s40095-020-00339-z

    Article  Google Scholar 

  69. Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM (2015) Heat transfer fluids for concentrating solar power systems—a review. Appl Energy 146:383–396

    Article  Google Scholar 

  70. De Falco M Solar power concentration—oil&gas portal. In: Univ. UCBM, Rome. http://www.oil-gasportal.com/solar-power-concentration/?print=print. Accessed 24 Aug 2020

  71. Saxena R, Rakshit D, Kaushik SC (2019) Phase change material (PCM) incorporated bricks for energy conservation in composite climate: a sustainable building solution. Sol Energy 183:276–284. https://doi.org/10.1016/j.solener.2019.03.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, A., Saxena, R., Tiwari, S. (2021). Phase Change Materials and Its Applications. In: Singh, S.N., Tiwari, P., Tiwari, S. (eds) Fundamentals and Innovations in Solar Energy. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6456-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6456-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6455-4

  • Online ISBN: 978-981-33-6456-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics