Skip to main content

Deep Learning-Based Essential Paddy Pests' Filtration Technique for Economic Damage Management

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture

Abstract

From the farmers’ perspective, it is very important to detect the beneficial and non-beneficial paddy pests for reducing the use of pesticides with increased productivity. In this chapter, a region-based deep convolutional neural network (Faster R-CNN) where a deep CNN is connected with a region proposal network (RPN) is used to perform the detection and identification paddy pests from the images. The main focus of this chapter is to find out not only harmful pests but also beneficial pests of paddy field so that farmers can make decisions when to use pesticides and when not to. A dataset with a large number of beneficial and harmful pests’ images from the paddy field was created for experimentation. Three models of Faster R-CNN based on ResNet-101, VGG-16, and MobileNet have been applied, and it is found that ResNet-101 gives the highest accuracy of 96.93% for beneficial and 95.07% for non-beneficial pest detection and identification compared to other networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agriculture, https://en.banglapedia.org/index.php?title=Agriculture#:~:text=Agricultural%20land%20The%20total%20land,and%20very%20lowland%20(2%25), last accessed 16 July 2020

  2. Chowdhury, A.T., Chowdhury, S.S.: Performance Evaluation of Agricultural Banks in Bangladesh. Int. J. Bus. Manage. 6(4), 75–89 (2011)

    Google Scholar 

  3. Ahiduzzaman, M.: Rice husk energy technologies in Bangladesh. Agric. Eng. Int. CIGR Ej. 9 (2007)

    Google Scholar 

  4. Zadoks, C. J.: Crop loss assessment: a historical perspective and rationale. In: International Workshop on Crop Loss Assessment to Improve Pest Management in Rice and Rice-based Cropping Systems in South and Southeast Asia, pp. 1–9. International Rice Research Institute, Philippines (1990)

    Google Scholar 

  5. Fuentes, A., Yoon, S., Kim, S.C., Park, D.S.: A robust deep-learning-based detector for real-time tomato plant diseases and pest’s recognition. J. Sens. 17(9) (2017)

    Google Scholar 

  6. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks-based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. (2016)

    Google Scholar 

  7. Karmokar, B.C., Ullah, M.S., Siddiquee, M.K., Alam, K. M. R.: Tea leaf diseases recognition using neural network ensemble. Int. J. Comput. Appl. 114(17) (2015)

    Google Scholar 

  8. Wang, G., Sun, Y., Wang, J.: Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. (2017)

    Google Scholar 

  9. Huang, S., Fan, X., Sun, L., Shen, Y., Suo, X.: Research on classification method of maize seed defect based on machine vision. J. Sens. 1–9. Hindawi, London (2019)

    Google Scholar 

  10. Miah, S., Hoque, A., Paul, D., Rahman, D.: Unsafe use of pesticide and its impact on health of farmers: a case study in Burichong Upazila, Bangladesh. IOSR J. Environ. Sci. Toxicol. Food Technol. 8(1), 57–67 (2014)

    Article  Google Scholar 

  11. Salahat, E., Qasaimeh, M.: Recent advances in features extraction and description algorithms: a comprehensive survey. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT), pp. 1059–1063 (2017)

    Google Scholar 

  12. Gutierrez, A., Ansuategi, A., Susperregi, L., Tubío, C., Rankić, I., Lenža, L.: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases. J. Sens. 1–15 (2019)

    Google Scholar 

  13. Al-Saqer, S.M.: A robust recognition system for pecan weevil using artificial neural networks. Am. J. App. Sci. (2012)

    Google Scholar 

  14. Prathibha, G.P., Goutham, T., Tejaswini, M., Rajas, P.R., Balasubramani, K.: Early pest detection in tomato plantation using image processing. Int. J. Comput. Appl. 96(12), 22–24 (2014)

    Google Scholar 

  15. Zhang, X., Qiao, Y., Meng, F., Fan, C., Zhang, M.: Identification of Maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6, 30370–30377 (2018)

    Article  Google Scholar 

  16. Aryalekshmi, B.N., Rajashekar, B., Sushmitha, M.T.: Survey on deep learning architectures in identification of crop pests and diseases. Int. J. Adv. Sci. Technol. 29(10S), 8274–8281 (2020)

    Google Scholar 

  17. Nasiruddin, M., Roy, R.: Rice field insect pests during the RRCE growing seasons in two areas of Hathazari, Chittagong. Bangladesh J. Zool. 40(1), 89–100 (2012)

    Article  Google Scholar 

  18. Pathak, M., Khan, Z.: Insect Pests OF RICE. International Rice Research Institute, Philippines (1994)

    Google Scholar 

  19. Brummer, B., Vleeschouwer, D.C.: Natural Image Noise Dataset. IEEE Xplore, Louvain-la-Neuve, Belgium (2020)

    Google Scholar 

  20. Deng, G., Cahill, L, W. An adaptive Gaussian filter for noise reduction and edge detection. In: Proceedings of Nuclear Science Symposium and Medical Imaging Conference, (1993)

    Google Scholar 

  21. Firdausy, K., Sutikno, T., Prasetyo, E.: Image enhancement using contrast stretching on RGB and IHS digital image. Telkomnika (Telecommunication Computing Electronics and Control), vol. 5, pp. 45, (2007)

    Google Scholar 

  22. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 1, pp. 255–261. Greece (1999)

    Google Scholar 

  23. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, Proceedings (2003)

    Google Scholar 

  24. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  Google Scholar 

  25. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018)

    Google Scholar 

  26. Tammina, S.: Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP) 9(10) (2019)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  28. Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, https://arxiv.org/abs/1704.04861, last accessed 19 July 2020

  29. Hasan, M.Z., Hasan, K.M.Z., Sattar, A.: burst header packet flood detection in optical burst switching network using deep learning model. Proc. Comput. Sci. 14, 970–977 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zahid Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, M., Zeba, N., Shorif, S.B., Akter, M. (2021). Deep Learning-Based Essential Paddy Pests' Filtration Technique for Economic Damage Management. In: Uddin, M.S., Bansal, J.C. (eds) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6424-0_4

Download citation

Publish with us

Policies and ethics