Skip to main content

Robots and Drones in Agriculture—A Survey

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture

Abstract

The world’s economy predominantly depends on agriculture. Increasing population growth along with an inadequate supply of modern agricultural resources is resulting in famine, which causes a dreadful recession in the economy. To bridge this gap, automation in agriculture has been assembled with diverse robotics technologies by replacing traditional farming processes to improve agricultural efficiency. Robotics in agriculture generally represents the concept of precision agriculture also known as smart farming. It is an intervention technology that operates automated processes by monitoring the use of modern tools such as sensors, robots, and drones via continuous data analysis to optimize the farming process, time, and energy. This chapter presents a technical review on several robotic applications in agriculture such as navigation, grafting, picking, weeding, spraying, harvesting, etc. Besides, we illustrate the commercialization and challenges of real-fields applications of robots and drones including further extensive opportunities in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alston, J.M., Pardey, P.G.: Agriculture in the Global Economy. J. Econ. Perspect. 28(1), 121–146 (2014)

    Article  Google Scholar 

  2. Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L.M., Hernandez, M., Dumont, M., Mora, M.L.: Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 147, 119–157 (2018)

    Article  Google Scholar 

  3. Ahmed, H., Juraimi, A.S., Hamdani, S.M.: Introduction to robotics agriculture in pest control: A review. Pertanika J. Sch. Res. Rev. 2(2), 80–93 (2016)

    Google Scholar 

  4. Lee, K.W., Kim, H.R., Yoon, W.C., Yoon, Y.S., Kwon D.S.: Designing a human-robot interaction framework for home service robot. In: International Workshop on Robots and Human Interactive Communication, pp. 286–293. IEEE (2005)

    Google Scholar 

  5. Barbash, G.I., Glied, S.A.: New technology and health care costs—The case of robot-assisted surgery. N. Engl. J. Med. 363(8), 701–704 (2010)

    Article  Google Scholar 

  6. Wang, W., Li, R., Chen, Y., Diekel, Z.M., Jia, Y.: Facilitating human-robot collaborative tasks by teaching-learning-collaboration from human demonstrations. In: IEEE Transactions on Automation Science and Engineering, pp. 1–14. IEEE (2018)

    Google Scholar 

  7. Bechar, A., Edan, Y.: Human-robot collaboration for improved target recognition of agricultural robots. Ind. Robot 30(5), 432–436 (2003)

    Article  Google Scholar 

  8. Monta, M., Kondo, N., Shibano, Y.: Agricultural robot in grape production system. In: International Conference on Robotics and Automation, vol. 3, pp. 2504–2509. IEEE, Nagoya, Japan (1995)

    Google Scholar 

  9. Amer, G., Mudassir, S.M.M., Malik, M.A.: Design and operation of Wi-Fi agribot integrated system. In: International Conference on Industrial Instrumentation and Control (ICIC), pp. 207–212. IEEE, Pune (2015)

    Google Scholar 

  10. Auat Cheein, F.A., Carelli, R.: Agricultural robotics: Unmanned robotic service units in agricultural tasks. Ind. Electron. Mag. 7(3), 48–58, IEEE (2013)

    Google Scholar 

  11. Kurata, K.: Cultivation of grafted vegetables II. Development of grafting robots in Japan. HortScience 29, 240–244 (1994)

    Article  Google Scholar 

  12. Van Henten, E.J., Van Tuijl, B.A.J., Hemming, J., Kornet, J.G., Bontsema, J., Os, E.A.V.: Field test of an autonomous cucumber picking robot. Biosys. Eng. 86(3), 305–313 (2003)

    Article  Google Scholar 

  13. Bawden, O., Kulk, J., Russell, R., McCool, C., English, A., Dayoub, F., Lehnert, C., Perez, T.: Robot for weed species plant-specific management. J. Field Robot. 34(6), 1179–1199 (2017)

    Article  Google Scholar 

  14. Sammons, P.J., Furukawa, T., Bulgin, A.: Autonomous pesticide spraying robot for use in a greenhouse. Aust. Conf. Robotics Autom. 1–9 (2005)

    Google Scholar 

  15. Tanigaki, K., Fujiura, T., Akase, A., Imagawa, J.: Cherry-harvesting robot. Comput. Electron. Agric. 63(1), 65–72 (2008)

    Article  Google Scholar 

  16. Zhou, J., Zhang, M., Liu, G., Li, S.: Fuzzy control for automatic steering and line tracking of agricultural robot. Int. Conf. Comput. Sci. Softw. Eng. 1094–1097 (2008)

    Google Scholar 

  17. Prema, K., Kumar, N.S., Dash, S.S., Chowdary, S.: Online control of remote operated agricultural robot using Fuzzy controller and virtual instrumentation. Int. Conf. Adv. Eng. Sci. Manag. 196–201 (2012)

    Google Scholar 

  18. de Sousa, R.V., Lopes, W.C., Pereira, R.R.D., Inamasu, R.Y., Porto, A.J.V.: A methodology for composing and coordinating primitive Fuzzy behaviors to guide mobile agricultural robots. In: 9th International Conference on Control and Automation, pp. 280–285. IEEE (2011)

    Google Scholar 

  19. Zhao, C.J., Jiang, G.Q.: Baseline detection and matching to vision-based navigation of agricultural robot. Int. Conf. Wavelet Anal. Pattern Recogn. 44–48 (2010)

    Google Scholar 

  20. Zhang, Y., Gao, F., Tian, L.: INS/GPS integrated navigation for wheeled agricultural robot based on sigma-point Kalman filter. In: 7th International Conference on System Simulation and Scientific Computing, pp. 1425–1431. Asia Simulation Conference (2008)

    Google Scholar 

  21. Thamrin, N.M., Arshad, N.H.M., Adnan, R., Sam, R., Razak, N.A., Misnan, M.F., Mahmud, S.F.: Tree detection profile using a single non-intrusive ultrasonic sensor for inter-row tracking application in agriculture field. In: 9th international colloquium on signal processing and its applications, pp. 310–313. IEEE (2013)

    Google Scholar 

  22. Xue, J., Xu, L.: Autonomous agricultural robot and its row guidance. In: International Conference on Measuring Technology and Mechatronics Automation, pp. 725–729 (2010)

    Google Scholar 

  23. Liu, P., Bi, S., Zang, G., Wang, W., Gao, Y., Deng, Z.: Obstacle avoidance system for agricultural robots based on multi-sensor information fusion. In: International Conference on Computer Science and Network Technology, pp. 1181–1185 (2011)

    Google Scholar 

  24. Srivastava, A., Vijay, S., Negi, A., Shrivastava, P., Singh, A.: DTMF based intelligent farming robotic vehicle: An ease to farmers. In: International Conference on Embedded Systems (ICES), pp. 206–210, Coimbatore (2014)

    Google Scholar 

  25. Agarwal, N., Thakur, R.: Agricultural robot: Intelligent robot for farming. Int. Adv. Res. J. Sci. Eng. Technol. (IARJSET) 3(8), 1–5 (2016)

    Google Scholar 

  26. Srilekha, K., Monika, J.: Design and operation of Wi-Fi Agribot integrated system. Int. J. Sci. Eng. Technol. Res. (IJSETR) 5(22), 4473–4478 (2016)

    Google Scholar 

  27. Phanomchoeng, G., Saadi, M., Sasithong, P., Tangmongkhonsuk, J., Wijayasekara, S.K., Wuttisittikulkij, L.: Hardware software co-design of a farming robot. Eng. J. 24(1), 1–10 (2020)

    Article  Google Scholar 

  28. Jiang, L., Zhang, Y.: Making agriculture more intelligent: Progress of agricultural robots. Rob. Autom. Eng. J. 4(1), 1–7 (2018)

    Google Scholar 

  29. Agriculture Robots. Available Online: https://www.postscapes.com/agriculture-robots/#indoor-ag-robots

  30. Mikhaylov, M.N., Lositskii, I.A.: Control and navigation of forest robot. In: 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), pp. 1–2, St. Petersburg (2018)

    Google Scholar 

  31. Hellström, T.: Autonomous navigation for forest machines. A project pre-study in the Department of Computer Science, Umea University, Sweden (2002)

    Google Scholar 

  32. Nagasaka, Y., Umeda, N., Kanetai, Y., Taniwaki, K., Sasaki, Y.: Autonomous guidance for rice transplanting using global positioning and gyroscopes. Comput. Electron. Agric. 43(3), 223–234 (2004)

    Article  Google Scholar 

  33. Hellström, T., Johansson, T., Ringdahl, O.: Development of an autonomous forest machine for path tracking. In: P. Corke, S. Sukkariah (eds.) Field and Service Robotics, Springer Tracts in Advanced Robotics, vol. 25, Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  34. Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehicle autonomous guidance. Int. J. Agric. Biol. Eng. 2(3), 1–16 (2008)

    Google Scholar 

  35. Ringdahl, O., Lindroos, O., Hellström, T., Bergström, D., Athanassiadis, D., Nordfjell, T.: Path tracking in forest terrain by an autonomous forwarder. Scand. J. For. Res. 26(4), 350–359 (2011)

    Article  Google Scholar 

  36. Gottschalk, R., Burgos-Artizzu, X.P., Ribeiro, A., Pajares, G.: Real-time image processing for the guidance of a small agricultural field inspection vehicle. Int. J. Intell. Syst. Technol. Appl. 8(1–4), 434–443 (2010)

    Google Scholar 

  37. Wang, M., Wang, X., Yi, X., Tu, J.: Experimental study on long-range navigation behavior of agricultural robots. Int. Conf. Comput. Measure. Control Sens. Netw. 409–412 (2012)

    Google Scholar 

  38. Ayala, M., Soria, C., Carelli, R.: Visual servo control of a mobile robot in agriculture environments. Mech. Based Des. Struct. Mach. 36(4), 392–410 (2008)

    Article  Google Scholar 

  39. Gao, F., Xun, Y. Wu, J. Bao, G., Tan, Y.: Navigation line detection based on robotic vision in natural vegetation-embraced environment. In: 3rd International Congress on Image and Signal Processing (CISP), pp. 2596–260 (2010)

    Google Scholar 

  40. Torres-Sospedra, J., Nebot, P.: A new approach to visual-based sensory system for navigation into orange groves. Sensors 11(4), 4086–4103 (2011)

    Article  Google Scholar 

  41. Zhang, J., Kantor, G., Bergerman, M., Singh, S.: Monocular visual navigation of an autonomous vehicle in natural scene corridor-like environments. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3659–3666, IEEE/RSJ, Vilamoura, Algarve, Portugal (2012)

    Google Scholar 

  42. Weiss, U., Biber, P.: Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Rob. Auton. Syst. 59, 265–273 (2011)

    Article  Google Scholar 

  43. Ball, D., Upcroft, B., Wyeth, G., Corke, P., English, A., Ross, P., Patten, T., Fitch, R., Sukkarieh, S., Bate, A.: Vision-based obstacle detection and navigation for an agricultural robot. J. Field Rob. 33, 1107–1130 (2016)

    Article  Google Scholar 

  44. Han, S., Zhang, Q., Noh, H.: Kalman filtering of DGPS positions for a parallel tracking application. Trans. Am. Soc. Agric. Eng. 45(3), 553–560 (2002)

    Google Scholar 

  45. Nørremark, M., Griepentrog, H.W., Nielsen, J., Søgaard, H.T.: The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosys. Eng. 101(4), 396–410 (2008)

    Article  Google Scholar 

  46. Libby, J., Kantor, G.: Deployment of a point and line feature localization system for an outdoor agriculture vehicle. International Conference on Robotics and Automation (ICRA), pp. 1565–1570. IEEE, Shanghai, China (2011)

    Google Scholar 

  47. Christiansen, M.: Localization in Orchards using extended Kalman filter for sensor-fusion. Master thesis, University of Southern Denmark (2011)

    Google Scholar 

  48. Dørum, J.: Autonomous navigation and row detection in crop fields using computer vision. Master thesis, Norwegian University of Science and Technology (2015)

    Google Scholar 

  49. Boubertakh, H., Tadjine, M., Glorennec, P., Labiod, S.: A simple goal seeking navigation method for a mobile robot using human sense, fuzzy logic and reinforcement learning. J. Autom. Control 18(1), 23–27 (2008)

    Article  MATH  Google Scholar 

  50. Yousfi, N., Rekik, C., Jallouli, M., Derbel, N.: Optimized Fuzzy controller for mobile robot navigation in a cluttered environment. In: 7th International Multi-Conference on Systems, Signals and Devices, pp. 1–7, IEEE, Amman, Jordan (2010)

    Google Scholar 

  51. Troyer, T.A., Pitla, S., Nutter, E.: Inter-row robot navigation using 1D ranging sensors. IFAC-PapersOnLine 49(16), 463–468 (2016)

    Article  Google Scholar 

  52. Gavrilov, A. V., Lee, S.: An architecture of hybrid neural network based navigation system for mobile robot. In: 7th International Conference on Intelligent Systems Design and Applications, pp. 587–590, IEEE, Brazil (2007)

    Google Scholar 

  53. Ryerson, A., Zhang, Q.: Vehicle path planning for complete field coverage using genetic algorithms. In: Proceedings of the Automation Technology for Off-road Equipment (ATOE), pp. 309–317, Boon, Germany (2007)

    Google Scholar 

  54. Nichols, E., McDaid, L.J., Siddique, N.: Biologically inspired SNN for robot control. IEEE Trans. Cybern. 15(2), 115–128 (2013)

    Article  Google Scholar 

  55. Motlagh, O., Nakhaeinia, D., Tang, S.H., Karasfi, B., Khaksar, W.: Automatic navigation of mobile robots in unknown environments. Neural Comput. Appl. 24(7), 1569–1581 (2014)

    Article  Google Scholar 

  56. Nishiura, Y., Honami, N., Taira, T.: Development of a new grafting method, 4: Robotization of grafting operation. J. Jpn. Soc. Agric. Mach. 61(6), 103–112 (1999)

    Google Scholar 

  57. Osamu, Y., Akiko, F.: Growth adjustment technique of seedling optimal for grafting by seedling storage for cucumber full-automatic machine grafting. Tokyo Agric. Res. 55(1), 201–202 (2002)

    Google Scholar 

  58. Ken, K., Kenta, S., Sadao, S.: Study on automation of seedlings feeding for grafting robot for cucurbitaceous vegetables (Part1). J. Jpn. Soc. Agric. Mach. 68(6), 117–123 (2006)

    Google Scholar 

  59. Kang, C.-H., Han, G.-S., Noh, T.-H., Choi, H.-G.: Splice Grafting Robot for Fruit and Vegetable Plants. World Intellectual Property Organization, WO/2005/089532 (2005)

    Google Scholar 

  60. Chen, S., Chiu, Y.C., Chang, Y.C.: Development of a tubing-grafting robotic system for fruit-bearing vegetable seedlings. Appl. Eng. Agric. 26(4), 707–714 (2010)

    Article  Google Scholar 

  61. Lee, J.-M., Kubota, C., Tsao, S.J., Bie, Z.-L., Echevarría, P., Morra, L., Oda, M.: Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127(2), 93–105 (2010)

    Article  Google Scholar 

  62. Chang, Y.-C., Chen, S., Chiu, Y.-C., Lin, L.-H., Chang, Y.-S.: Growth and union acclimation process of sweet pepper grafted by a tubing-grafting robotic system. Hortic. Environ. Biotechnol. 53(2), 93–101 (2012)

    Article  Google Scholar 

  63. Libin, Z., Qinghua, Y., Guanjun, B., Yan, W., Liyong, Q., Feng, G., Fang, X.: Overview of research on agricultural robots in China. Int. J. Agric. Biol. Eng. 1(1), 12–21 (2008)

    Google Scholar 

  64. Kubota, C., McClure, M.A., Kokalis-Burelle, N., Bausher, M.G., Rosskopf, E.N.: Vegetable grafting: History, use, and current technology status in North America. HortScience 43(6), 1664–1669 (2008)

    Article  Google Scholar 

  65. Li, M., Dai, S., Tang, C., Xiang, Y.: Simulation test on plant let-cutting mechanism of grafting robot. Trans. Chin. Soc. Agric. Eng. 24(6), 129–132 (2008)

    Google Scholar 

  66. Zhao, Y., Zhang, T., Wang, H.: Cutting mechanism of root parental stock in automatic sapling grafting machine. Trans. Chin. Soc. Agric. Eng. 24(9), 79–83 (2008)

    Google Scholar 

  67. Jiang, X.: Design of model PJJ-50 grape grafting machine. Agric. Equip. Vehicle Eng. 11, 7–9 (2011)

    Google Scholar 

  68. Wang, F., Liu, M., Wu, X., Cao, X.: Study and design of grafting robot for camellia oleifera seedlings. Forest Machine and Equipment 39(4), 36–39 (2011)

    Google Scholar 

  69. Nezhad, B., Massah, J., Ebrahimpour-Komleh, H.: Design and construction of intelligent tomato picking machine vision. Majlesi J. Electr. Eng (2012)

    Google Scholar 

  70. Feng, Q., Wang, X., Wang, G., Li, Z.: Design and test of tomatoes harvesting robot. In: International Conference on Information and Automation, pp. 949–952. IEEE, Lijiang (2015)

    Google Scholar 

  71. Xiong, Y., From, P.J., Isler, V.: Design and evaluation of a novel cable-driven gripper with perception capabilities for strawberry picking robots. In: International Conference on Robotics and Automation (ICRA), pp. 7384–739. IEEE, Brisbane, QLD (2018)

    Google Scholar 

  72. Ashwini, K.: Survey paper on fruit picking robots. Int. J. Comput. Sci. Mobile Comput. 5(1), 96–101 (2016)

    Google Scholar 

  73. Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 61(1), 63–78 (2008)

    Article  Google Scholar 

  74. Bakker, T., van K.A., Bontsema, J., Müller, J., van, G.S.: Systematic design of an autonomous platform for robotic weeding. J. Terramech. 47(2), 63–73 (2010)

    Google Scholar 

  75. Pérez-Ruíz, M., Slaughter, D.C., Fathallah, F.A., Gliever, C.J., Miller, B.J.: Co-Robotic intra-row weed control system. Biosys. Eng. 126, 45–55 (2014)

    Article  Google Scholar 

  76. Fennimore, S.A., Slaughter, D.C., Siemens, M.C., Leon, R.G., Saber, M.N.: Technology for automation of weed control in specialty crops. Weed Technol. 30(4), 823–837 (2016)

    Article  Google Scholar 

  77. Bechar, A., Vigneault, C.: Agricultural robots for field operations. Part 2: Operations and systems. Biosys. Eng. 153, 110–128 (2017)

    Article  Google Scholar 

  78. Kunz, C., Weber, J.F., Peteinatos, G.G., Sokefeld, M., Gerhards, R.: Camera steered mechanical weed control in sugar beet, maize and soybean. Precision Agric. 19(4), 708–720 (2018)

    Google Scholar 

  79. Chang, C.-L., Lin, K.-M.: Smart agricultural machine with a computer vision-based weeding and variable rate irrigation scheme. Robotics 7(3), 38 (2018)

    Article  Google Scholar 

  80. Steward, B.L., Gai, J., Tang, L.: The Use of Agricultural Robots in Weed Management and Control. Robotics and Automation for Improving Agriculture, pp. 161–186. Biosystems Engineering Publications (2019)

    Google Scholar 

  81. Wu, X., Aravecchia, S., Lottes, P., Stachniss, C., Pradalier, C.: Robotic weed control using automated weed and crop classification. J. Field Robot. 37(1), 1–29 (2020)

    Google Scholar 

  82. Sankaran, S., Mishra, A., Ehsani, R., Davis, C.: A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72(1), 1–13 (2010)

    Article  Google Scholar 

  83. Hengstler, S., Prashanth, D., Fong, S., Hamid, A.: Mesh: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: 6th International Conference on Information Processing in Sensor Networks, pp. 360–369. New York, USA (2007)

    Google Scholar 

  84. Laothawornkitkul, J., Moore, J.P., Taylor, J.E., Possell, M., Gibson, T.D., Hewitt, C.N., Paul, N.D.: Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring. Environ. Sci. Technol. 42(22), 8433–8439 (2008)

    Article  Google Scholar 

  85. Li, Y., Xia, C., Lee, J.: Vision-based pest detection and automatic spray of greenhouse plant. In: International Symposium on Industrial Electronics, pp. 920–925. IEEE, Seoul (2009)

    Google Scholar 

  86. Camargoa, A., Smith, J.S.: An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosys. Eng. 102(1), 9–21 (2009)

    Article  Google Scholar 

  87. López, O., Rach, M.M., Migallon, H., Malumbres, M.P., Bonastre, A., Serrano, J.J.: Monitoring pest insect traps by means of low-power image sensor technologies. Sensors 12(11), 15801–15819 (2012)

    Article  Google Scholar 

  88. Francis, J., Anto Sahaya Dhas, D., Anoop, B.K.: Identification of leaf diseases in pepper plants using soft computing techniques. In: Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 168–173. Namakkal (2016)

    Google Scholar 

  89. Yazgaç, B.G., Kirci, M., Kivan, M.: Detection of Sunn pests using sound signal processing methods. In: 5th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–6. Tianjin (2016)

    Google Scholar 

  90. Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., Pedrazzi, S., Peruzzi, A., Pajares, G., Kaplanis, G., Perez-Ruiz, M., Valero, C., del Cerro, J., Vieri, M., Rabatel, G., Debilde, B.: Fleets of robots for environmentally-safe pest control in agriculture. Precision Agric. 18, 574–614 (2017)

    Article  Google Scholar 

  91. Blackmore, S., Stout, B., Wang, M., Runov, B.: Robotic agriculture—The future of agricultural mechanization. In: 5th European Conference on Precision Agriculture (ECPA), pp. 621–628. Upsala, Sweden (2005)

    Google Scholar 

  92. Jian-sheng, P.: An intelligent robot system for spraying pesticides. Open Electr. Electron. Eng. J. 8(1), 435–444 (2014)

    Article  Google Scholar 

  93. Pilli, S.K., Nallathambi, B., George, S. J., Diwanji, V.: eAGROBOT—A robot for early crop disease detection using image processing. In: 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 1684–1689. Coimbatore (2015)

    Google Scholar 

  94. Sharma, S., Borse, R.: Automatic agriculture spraying robot with smart decision making. In: Corchado J., Rodriguez, S., Mitra, S., Thampi, E., El-Alfy, S. (eds) Intelligent Systems Technologies and Applications (ISTA), Advances in Intelligent Systems and Computing, vol. 530, pp. 743–758. Springer, Cham (2016)

    Google Scholar 

  95. Sudha, B., Bhuvana, L., Divya, V., Mamathashree, S.R., Pallavi: Automated pest detection and pesticide spraying robot. Int. J. Recent Trends Eng. Res. (IJRTER) 4(4), 1–8 (2018)

    Google Scholar 

  96. Chaitanya, P., Kotte, D., Srinath, A., Kalyan, K.B.: Development of smart pesticide spraying robot. Int. J. Recent Technol. Engi. (IJRTE) 8(5), 2193–2202 (2020)

    Article  Google Scholar 

  97. Ceres, R., Pons, J.L., Jiménez, A.R., Martín, J.M., Calderón, L.: Design and implementation of an aided fruit-harvesting robot (Agribot). Industr. Robot: An Int. J. 25(5), 337–346 (1998)

    Article  Google Scholar 

  98. Hua, Y., Zhang, N., Yuan, X., Quan, L., Yang, J., Nagasaka, K., Zhou, X.-G.: Recent advances in intelligent automated fruit harvesting robots. Open Agric. J. 13(1), 101–106 (2019)

    Article  Google Scholar 

  99. Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., Iwai, A.: An automated fruit harvesting robot by using deep learning. ROBOMECH J. 6(1), 1–8 (2019)

    Article  Google Scholar 

  100. Yuan, Y., Zhang, X., Zhao, H.: Apple harvesting robot picking path planning and simulation. In: International Conference on Information Engineering and Computer Science, pp. 1–4, Wuhan (2009)

    Google Scholar 

  101. Lv, J., Zhao, D., Ji, W., Chen, Y., Shen, H.: Design and research on vision system of apple harvesting robot. In: 3rd International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 177–180, Zhejiang (2011)

    Google Scholar 

  102. De-An, Z., Jidong, L., Wei, J., Ying, Z., Yu, C.: Design and control of an apple harvesting robot. Biosys. Eng. 110(2), 112–122 (2011)

    Article  Google Scholar 

  103. Li, Z., Liu, J., Li, P., Li, W.: Analysis of workspace and kinematics for a tomato harvesting robot. In: International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 823–827, Hunan (2008)

    Google Scholar 

  104. Wang, J., Zhou, Z., Du, X.: Design and co-simulation for tomato harvesting robots. In: 31st Chinese Control Conference, pp. 5105–5108, Hefei (2012)

    Google Scholar 

  105. Liu, J., Li, Z., Wang, F., Li, P., Xi, N.: Hand-arm coordination for a tomato harvesting robot based on commercial manipulator. In: International Conference on Robotics and Biomimetics (ROBIO), pp. 2715–2720. IEEE, Shenzhen (2013)

    Google Scholar 

  106. Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: International Conference on Intelligent Robots and Systems (IROS), pp. 652–657. IEEE/RSJ, Daejeon, (2016)

    Google Scholar 

  107. Wang, G., Yu, Y., Feng, Q.: Design of end-effector for tomato robotic harvesting. IFAC-PapersOnLine 49(16), 190–193 (2016)

    Article  Google Scholar 

  108. Sakai, S., Osuka, K., Fukushima, H., Iida, M.: Watermelon harvesting experiment of a heavy material handling agricultural robot with LQ control. In: International Conference on Intelligent Robots and Systems, vol. 1, pp. 769–774. IEEE/RSJ, Lausanne, Switzerland (2002)

    Google Scholar 

  109. Arima, S., Shibusawa, S., Kondo, N., Yamashita, J.: Traceability based on multi-operation robot; Information from spraying, harvesting and grading operation robot. In: International Conference on Advanced Intelligent Mechatronics (AIM 2003), vol. 2, pp. 1204–1209. IEEE/ASME, Kobe, Japan (2003)

    Google Scholar 

  110. Qingchun, F., Wengang, Z., Quan, Q., Kai, J., Rui, G.: Study on strawberry robotic harvesting system. In: International Conference on Computer Science and Automation Engineering (CSAE), pp. 320–324. IEEE, Zhangjiajie (2012)

    Google Scholar 

  111. Irie, N., Taguchi, N., Horie, T., Ishimatsu, T.: Asparagus harvesting robot coordinated with 3-D vision sensor. In: International Conference on Industrial Technology, pp. 1–6. IEEE, Gippsland, VIC (2009)

    Google Scholar 

  112. Birrell, S., Hughes, J., Cai, J.Y., Iida, F.: A field-tested robotic harvesting system for iceberg lettuce. J. Field Rob. 37(2), 225–245 (2020)

    Article  Google Scholar 

  113. Hajjaj, S.S.H., Sahari, K.S.M.: Review of agriculture robotics: Practicality and feasibility. In: International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 194–198. IEEE, Tokyo (2016)

    Google Scholar 

  114. Behmanesh, M., Hong, T.S., Kassim, M.S.M., Azim, A., Dashtizadeh, Z.: A brief survey on agricultural robots. Int. J. Mech. Eng. Rob. Res. (IJMERR) 6(3), 178–182 (2017)

    Google Scholar 

  115. Shamshiri, R.R., Weltzien, C., Hameed, I.A., Yule, I.J., Grift, T.E., Balasundram, S.K., Pitonakova, L., Ahmad, D., Chowdhary, G.: Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. (IJABE) 11(4), 1–14 (2018)

    Google Scholar 

  116. Jadhav, P.K., Deshmukh, S.S., Khairnar, P.N.: Survey paper on AgRo-bot autonomous robot. Int. Res. J. Eng. Technol. (IRJET) 6(12), 434–441 (2019)

    Google Scholar 

  117. Fue, K.G., Porter, W.M., Barnes, E.M., Rains, G.C.: An extensive review of mobile agricultural robotics for field operations: Focus on cotton harvesting. AgriEngineering 2(1), 150–174 (2020)

    Article  Google Scholar 

  118. Veroustraete, F.: The rise of the drones in agriculture. Ecronicon 2(2), 1–3 (2015)

    Google Scholar 

  119. Natu, A.S., Kulkarni, S.C.: Adoption and utilization of drones for advanced precision farming: A review. Int. J. Recent Innov. Trends Comput. Commun. 4(5), 563–565 (2016)

    Google Scholar 

  120. Ahirwar, S., Swarnkar, R., Bhukya, S., Namwade, G.: Application of drone in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 8(1), 2500–2505 (2019)

    Article  Google Scholar 

  121. Mogili, U.R., Deepak, B.: Review on application of drone systems in precision agriculture. Proc. Comput. Sci. 133, 502–509 (2018)

    Article  Google Scholar 

  122. Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., Silano, G.: A review on the use of drones for precision agriculture. IOP Conf. Ser. Earth Environ. Sci. 275, 1–11 (2019)

    Article  Google Scholar 

  123. Abdullahi, H.S., Mahieddine, F., Sheriff, R.E.: Technology impact on agricultural productivity: A review of precision agriculture using unmanned aerial vehicles. In: Pillai, P., Hu, Y., Otung, I., Giambene, G. (eds) Wireless and Satellite Systems, WiSATS, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 154, pp. 388–400. Springer, Cham (2015)

    Google Scholar 

  124. Primicerio, J., Di Gennaro, S.F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., Vaccari, F.P.: A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 13(4), 517–523 (2012)

    Article  Google Scholar 

  125. Bendig, J., Bolten, A., Bareth, G.: Introducing a low-cost mini-UAV for thermal-and multispectral-imaging. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress, vol. XXXIX-B1, pp. 345–349, Melbourne, Australia (2012)

    Google Scholar 

  126. Anthony, D., Elbaum, S., Lorenz, A., Detweiler, C.: On crop height estimation with UAVs. In: International Conference on Intelligent Robots and Systems, pp. 4805–4812. IEEE/RSJ, Chicago, IL (2014)

    Google Scholar 

  127. Huang, Y., Hoffmann, W.C., Lan, Y., Wu, W., Fritz, B.K.: Development of a spray system for an unmanned aerial vehicle platform. Appl. Eng. Agric. 25(6), 803–809 (2009)

    Article  Google Scholar 

  128. Faiçal, B.S., Costa, F.G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Fini, P.H., Villas, L., Osório, F.S., Vargas, P.A., Braun, T.: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Architect. 60(4), 393–404 (2014)

    Article  Google Scholar 

  129. Faiçal, B.S., Freitas, H., Gomes, P.H., Mano, L.Y., Pessin, G., de Carvalho, A.C.P.L.F., Krishnamachar, B., Ueyama, J.: An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 138, 210–223 (2017)

    Google Scholar 

  130. Kurkute, S.R., Deore, B.D., Kasar, P., Bhamare, M., Sahane, M.: Drones for smart agriculture: A technical report. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 6(IV), 341–346 (2018)

    Google Scholar 

  131. Talaviya, T., Shah, D., Patel, N., Yagnik, H., Shah, M.: Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 4, 58–73 (2020)

    Google Scholar 

  132. Thompson, L.J., Shi, Y., Ferguson, R.B.: Getting Started with Drones in Agriculture (G-2296). University of Nebraska Extension, NebGuide (2017)

    Google Scholar 

  133. Zheng, H., Zhou, X., Cheng, T., Yao, X., Tian, Y., Cao, W., Zhu, Y.: Evaluation of a UAV based hyperspectral frame camera for monitoring the leaf nitrogen concentration in rice. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 7350–7353. IEEE, Beijing (2016)

    Google Scholar 

  134. Reinecke, M., Prinsloo, T.: The influence of drone monitoring on crop health and harvest size. In: 1st International Conference in Next Generation Computing Applications (NextComp), pp. 5–10. IEEE, Mauritius (2017)

    Google Scholar 

  135. Psirofonia, P., Samaritakis, V., Eliopoulos, P., Potamitis, I.: Use of unmanned aerial vehicles for agricultural applications with emphasis on crop protection: Three novel case-studies. Int. J. Agric. Sci. Technol. 5(1), 30–39 (2017)

    Google Scholar 

  136. Yallappa, D., Veerangouda, M., Maski, D., Palled, V., Bheemanna, M.: Development and evaluation of drone mounted sprayer for pesticide applications to crops. Glob. Humanitarian Technol. Conf. (GHTC), pp. 1–7. IEEE, San Jose, CA (2017)

    Google Scholar 

  137. Pharne, I.D., Kanase, S., Patwegar, S., Patil, P., Pore, A., Kadam, Y.: Agriculture drone sprayer. Int. J. Recent Trends Eng. Res. 4(3), 181–185 (2018)

    Article  Google Scholar 

  138. Xiang, H., Tian, L.: Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosys. Eng. 108(2), 174–190 (2011)

    Article  MathSciNet  Google Scholar 

  139. Senthilnath, J., Dokania, A., Kandukuri, M.K.N.R., Anand, G., Omkar, S.N.: Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosys. Eng. 146, 16–36 (2016)

    Article  Google Scholar 

  140. Kushwaha, H.L., Sinha, J.P., Khura, T., Kushwaha, D.K.: Status and scope of robotics in agriculture. Int. Conf. Emerg. Technol. Agric. Food Eng. 264–277 (2016)

    Google Scholar 

  141. Roldán, J.J., del Cerro, J., Garzón-Ramos, D., Garcia-Aunon, P., Garzón, M., de León, J., Barrientos, A.: Robots in agriculture: State of art and practical experiences. Appl. Rob. Greenhouse Farming 67–90 (2018)

    Google Scholar 

  142. Emmi, L., de Soto, M.G., Pajares, G., de Santos, P.G.: New trends in robotics for agriculture: Integration and assessment of a real fleet of robots. Sci. World J. 2014, 21 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shorif Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basri, R., Islam, F., Shorif, S.B., Uddin, M.S. (2021). Robots and Drones in Agriculture—A Survey. In: Uddin, M.S., Bansal, J.C. (eds) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6424-0_2

Download citation

Publish with us

Policies and ethics