Skip to main content

An Efficient Bag-of-Features for Diseased Plant Identification

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Agriculture is the main source of human habitation and its redemption from disease is a primary concern for any economy. For the same, computer vision techniques have been proven to be quite useful. However, the diseased plant identification is still a challenging task due to the disparity in the leaf images. To alleviate the same, this chapter proposes a new bag-of-features-based diseased plant identification method. In the proposed method, the efficient visual words are generated using gray relational analysis-based clustering method, and for image encoding, two-dimensional vector quantization method is used. The proposed method is evaluated on a publicly available leaf images dataset, i.e., PlantVillage. Moreover, the performance is compared against the state-of-the-art classification methods in terms of accuracy, precision, recall, sensitivity, and specificity. Experiments validate that the proposed method is efficient than the compared methods image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, S., Sharma, B., Sharma, V.K., Sharma, H., Bansal, J.C.: Plant leaf disease identification using exponential spider monkey optimization. Sustain. Comput. Inform. Syst. (2018)

    Google Scholar 

  2. Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inform. Process. Agric. 4(1), 41–49 (2017)

    Google Scholar 

  3. Wang, Z., Li, H., Zhu, Y., Xu, T.: Review of plant identification based on image processing. Arch. Comput. Methods Eng. 24(3), 637–654 (2017)

    Article  MathSciNet  Google Scholar 

  4. Puja, D., Saraswat, M., Arya, K., et al.: Automatic agricultural leaves recognition system. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 123–131. Springer (2013)

    Google Scholar 

  5. Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y., Srinivasan, K.: Forecasting yield by integrating agrarian factors and machine learning models: a survey. Comput. Electron. Agric. 155, 257–282 (2018)

    Article  Google Scholar 

  6. Kaur, S., Pandey, S., Goel, S.: Plants disease identification and classification through leaf images: a survey. Arch. Comput. Methods Eng. 26(2), 507–530 (2019)

    Article  Google Scholar 

  7. Qiang, Z., He, L., Dai, F.: Identification of plant leaf diseases based on inception v3 transfer learning and fine-tuning. In: International Conference on Smart City and Informatization, pp. 118–127. Springer (2019)

    Google Scholar 

  8. Pal, R., Saraswat, M.: Histopathological image classification using enhanced bag-of-feature with spiral biogeography-based optimization. Appl. Intell. 49(9), 3406–3424 (2019). https://doi.org/10.1007/s10489-019-01460-1

  9. Pal, R., Saraswat, M.: A new weighted two-dimensional vector quantisation encoding method in bag-of-features for histopathological image classification. Int. J. Intell. Inform. Database Syst. 13(2–4), 150–171 (2020)

    Google Scholar 

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  11. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features. Comput. Vis. Image Understand. 110, 346–359 (2008)

    Google Scholar 

  12. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: Orb: An efficient alternative to sift or surf. In: Proceedings of IEEE International Conference on Computer Vision Workshops, pp. 2564–2571. Barcelona, Spain (2011)

    Google Scholar 

  13. Mittal, H., Saraswat, M., Pal, R.: Histopathological image classification by optimized neural network using IGSA. In: International Conference on Distributed Computing and Internet Technology, pp. 429–436. Springer (2020)

    Google Scholar 

  14. Bhatia, Y., Bajpayee, A., Raghuvanshi, D., Mittal, H.: Image captioning using Google’s inception-resnet-v2 and recurrent neural network. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE (2019)

    Google Scholar 

  15. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision, pp. 1470–1478. France (2003)

    Google Scholar 

  16. Pal, R., Saraswat, M.: A new bag-of-features method using biogeography-based optimization for categorization of histology images. Int. J. Inform. Syst. Manage. Sci. 1, 1–6 (2018)

    Google Scholar 

  17. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proceedings of Workshop on Statistical Learning in Computer Vision, pp. 1–2. Prague (2004)

    Google Scholar 

  18. Mittal, H., Saraswat, M.: Classification of histopathological images through bag-of-visual-words and gravitational search algorithm. In: Proceedings of Soft Computing for Problem Solving, pp. 231–241. Springer (2019)

    Google Scholar 

  19. Pal, R., Saraswat, M.: Grey relational analysis based keypoints selection in bag-of-features for histopathological image classification. Recent Patents Comput. Sci. 12(4), 260–268 (2019)

    Article  Google Scholar 

  20. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149, 736–751 (2015)

    Article  Google Scholar 

  21. Polakowski, W.E., Cournoyer, D.A., Rogers, S.K., DeSimio, M.P., Ruck, D.W., Hoffmeister, J.W., Raines, R.A.: Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency. IEEE Trans. Med. Imag. 16, 811–819 (1997)

    Article  Google Scholar 

  22. Ørting, S.N., Petersen, J., Thomsen, L.H., Wille, M.M., de Bruijne, M.: Detecting emphysema with multiple instance learning. In: Proceedings of International Symposium on Biomedical Imaging, pp. 510–513. Washington, United States (2018)

    Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  24. Leutenegger, S., Chli, M., Siegwart, R.: Brisk: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555. Tokyo, Japan (2011)

    Google Scholar 

  25. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. Rhode Island, England (2012)

    Google Scholar 

  26. Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distributed canny edge detector: algorithm and FPGA implementation. IEEE Trans. Image Process. 23, 2944–2960 (2014)

    Article  MathSciNet  Google Scholar 

  27. Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 403–410. Nagoya, Japan (2013)

    Google Scholar 

  28. Mittal, H., Saraswat, M.: A new fuzzy cluster validity index for hyper-ellipsoid or hyper-spherical shape close clusters with distant centroids. IEEE Trans. Fuzzy Syst. (2020)

    Google Scholar 

  29. Kulhari, A., Pandey, A., Pal, R., Mittal, H.: Unsupervised data classification using modified cuckoo search method. In: 2016 Ninth International Conference on Contemporary Computing (IC3), pp. 1–5. IEEE (2016)

    Google Scholar 

  30. Pal, R., Saraswat, M.: Data clustering using enhanced biogeography-based optimization. In: 2017 Tenth International Conference on Contemporary Computing (IC3). IEEE (2017). https://doi.org/10.1109/ic3.2017.8284305

  31. Mittal, H., Saraswat, M.: CKGSA based fuzzy clustering method for image segmentation of rgb-d images. In: 2018 Eleventh International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE (2018)

    Google Scholar 

  32. Pal, R., Saraswat, M.: Improved biogeography-based optimization. Int. J. Adv. Intell. Paradigms (2017) (In Press)

    Google Scholar 

  33. Pandey, A.C., Tripathi, A.K., Pal, R., Mittal, H., Saraswat, M.: Spiral salp swarm optimization algorithm. In: 2019 4th International Conference on Information Systems and Computer Networks (ISCON), pp. 722–727. IEEE (2019)

    Google Scholar 

  34. Jaiswal, K., Mittal, H., Kukreja, S.: Randomized grey wolf optimizer (rgwo) with randomly weighted coefficients. In: 2017 Tenth International Conference on Contemporary Computing (IC3), pp. 1–3. IEEE (2017)

    Google Scholar 

  35. Gupta, R., Pal, R.: Biogeography-based optimization with léVY-flight exploration for combinatorial optimization. In: 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE (2018). https://doi.org/10.1109/confluence.2018.8442942

  36. Mittal, H., Saraswat, M.: An optimum multi-level image thresholding segmentation using non-local means 2d histogram and exponential kbest gravitational search algorithm. Eng. Appl. Artif. Intell. 71, 226–235 (2018)

    Article  Google Scholar 

  37. Mittal, H., Saraswat, M.: An image segmentation method using logarithmic kbest gravitational search algorithm based superpixel clustering. Evolut. Intell. 1–13 (2018)

    Google Scholar 

  38. Mehta, K., Pal, R.: Biogeography based optimization protocol for energy efficient evolutionary algorithm: (BBO: EEEA). In: 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). IEEE (2017). https://doi.org/10.1109/ic3tsn.2017.8284492

  39. Pal, R., Yadav, S., Karnwal, R., Aarti: EEWC: energy-efficient weighted clustering method based on genetic algorithm for HWSNs. Complex Intell. Syst. 6(2), 391–400 (2020). https://doi.org/10.1007/s40747-020-00137-4

  40. Pandey, A.C., Pal, R., Kulhari, A.: Unsupervised data classification using improved biogeography based optimization. Int. J. Syst. Assurance Eng. Manage. 9(4), 821–829 (2017). https://doi.org/10.1007/s13198-017-0660-2

  41. Mittal, H., Pal, R., Kulhari, A., Saraswat, M.: Chaotic kbest gravitational search algorithm (ckgsa). In: Proceedings of International Conference on Contemporary Computing, pp. 1–6. Noida, India (2016)

    Google Scholar 

  42. Julong, D.: Introduction to grey system theory. J. Grey Syst. 1, 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of IEEE International Conference on Computer Vision, pp. 604–610. California, United States (2005)

    Google Scholar 

  44. Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput. Vis. Image Understand. 150, 109–125 (2016)

    Article  Google Scholar 

  45. Huang, Y., Wu, Z., Wang, L., Tan, T.: Feature coding in image classification: a comprehensive study. IEEE Trans. Pattern Anal. Mach. Intell. 36, 493–506 (2014)

    Article  Google Scholar 

  46. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.-M.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1271–1283 (2010). https://doi.org/10.1109/tpami.2009.132

  47. Liu, L., Wang, L., Liu, X.: In defense of soft-assignment coding. In: Proceedings of International Conference on Computer Vision, pp. 2486–2493. Tokyo, Japan (2011). https://doi.org/10.1109/iccv.2011.6126534

  48. Huang, Y., Huang, K., Yu, Tan, T.: Salient coding for image classification. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1753–1760. Colorado, USA (2011). https://doi.org/10.1109/cvpr.2011.5995682

  49. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007). https://doi.org/10.1109/tit.2007.909108

  50. Yang, J., Yu, K., Gong, Y., Huang, T.S., et al.: Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 179–1801. Florida, United States (2009)

    Google Scholar 

  51. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Proceedings of Advances in Neural Information Processing Systems, pp. 2223–2231. Vancouver, Canada (2009)

    Google Scholar 

  52. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3360–3367. California, United States (2010)

    Google Scholar 

  53. Yu, K., Zhang, T.: Improved local coordinate coding using local tangents. In: Proceedings of International Conference on Machine Learning, pp. 1–8. Haifa, Israel (2010)

    Google Scholar 

  54. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Proceedings of European Conference on Computer Vision, pp. 141–154. Crete, Greece (2010)

    Google Scholar 

  55. Jegou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1704–1716 (2012). https://doi.org/10.1109/tpami.2011.235

  56. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Frontiers Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  57. Raza, S.H., Parry, R.M., Moffitt, R.A., Young, A.N., Wang, M.D.: An analysis of scale and rotation invariance in the bag-of-features method for histopathological image classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 66–74. Toronto, Canada (2011)

    Google Scholar 

  58. Wang, C.-W., Chen, H.-C.: Improved image alignment method in application to x-ray images and biological images. Bioinformatics 29, 1879–1887 (2013)

    Article  Google Scholar 

  59. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Proceedings of European Conference on Computer Vision, pp. 589–600. Graz, Austria (2006)

    Google Scholar 

  60. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: Brief: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1281–1298 (2011)

    Article  Google Scholar 

  61. Stanciu, S.G., Xu, S., Peng, Q., Yan, J., Stanciu, G.A., Welsch, R.E., So, P.T.C., Csucs, G., Yu, H.: Experimenting liver fibrosis diagnostic by two photon excitation microscopy and bag-of-features image classification. Sci. Rep. 4, 4636–4656 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Saraswat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, R., Mittal, H., Pandey, A., Saraswat, M. (2021). An Efficient Bag-of-Features for Diseased Plant Identification. In: Uddin, M.S., Bansal, J.C. (eds) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6424-0_11

Download citation

Publish with us

Policies and ethics