Skip to main content

Machine Vision-Based Fruit and Vegetable Disease Recognition: A Review

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture

Abstract

The agriculture sector is a very much potential application domain for computer vision—a major branch of artificial intelligence. Many efforts have been made using different computer vision techniques to address different problems of agriculture. The machine vision-based diagnosis of fruits and vegetables is a notable problem domain in this regard. This problem domain has beckoned the computer vision and machine learning researchers to contribute to this domain. In this chapter, we have performed a comprehensive review on the recent advancement of computer vision and machine learning research efforts for fruit and vegetable disease recognition. Besides, we have given a comparative study on these efforts based on performance metrics to find the state-of-the-art techniques and shows ways for future work. This work is expected to be very much useful for the new and old researchers in the area of machine vision-based fruit and vegetable disease recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Current World Population: Available at https://www.worldometers.info/world-population/#ref-1. Accessed 25 Aug 2020

  2. FAO: The Future of Food and Agriculture—Trends and Challenges. Rome (2017). ISBN 978-92-5-109551-5

    Google Scholar 

  3. Zhang, J., Lu, C., Li, X., Kim, H., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 16(5), 3345–3367 (2019)

    Article  Google Scholar 

  4. Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., Totonchi, M.: Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception. In: Proceedings SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 1069612, 13 Apr 2018

    Google Scholar 

  5. Kieffer, B., Babaie, M., Kalra, S., Tizhoosh, H.R.: Convolutional neural networks for histopathology image classification: training vs. using pre-trained networks. In: 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, pp. 1–6 (2017)

    Google Scholar 

  6. Jin, X., Chi, J., Peng, S., Tian, Y., Ye, C., Li, X.: Deep image aesthetics classification using inception modules and fine-tuning connected layer. In: 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, pp. 1–6 (2016)

    Google Scholar 

  7. Singla, A., Yuan, L., Ebrahimi, T.: Food/non-food image classification and food categorization using pre-trained GoogLeNet model. In: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management (MADiMa’16). Association for Computing Machinery, New York, NY, USA, pp. 3–11 (2016)

    Google Scholar 

  8. Jung, H., Choi, M., Jung, J., Lee, J., Kwon, S., Jung, W.Y.: ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, pp. 934–940 (2017)

    Google Scholar 

  9. Habib, M.T.: Machine Vision Based Textile Defects Classification. LAP Lambert Academic Publishing (2017)

    Google Scholar 

  10. Zeng, G.: Fruit and vegetables classification system using image saliency and convolutional neural network. In: 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, pp. 613–617 (2017)

    Google Scholar 

  11. Samajpati, B.J., Degadwala, S.D.: Hybrid approach for apple fruit diseases detection and classification using random forest classifier. In: 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, pp. 1015–1019 (2016)

    Google Scholar 

  12. Omrani, E., Khoshnevisan, B., Shamshirband, S., Saboohi, H., Anuar, N.B., Md Nasir, M.H.N.: Potential of radial basis function-based support vector regression for apple disease detection. Measurement 55, 512–519 (2014)

    Google Scholar 

  13. Rozario, L.J., Rahman, T., Uddin, M.S.: Segmentation of the region of defects in fruits and vegetables. Int. J. Comput. Sci. Inf. Secur. 14(5), 399–406 (2016)

    Google Scholar 

  14. Habib, M., Mia, M., Mia, M., Uddin, M., Ahmed, F.: A computer vision approach for jackfruit disease recognition. In: Uddin, M., Bansal, J. (eds.) Proceedings of International Joint Conference on Computational Intelligence. IJCCI 2019. Algorithms for Intelligent Systems. Springer, Singapore (2020)

    Google Scholar 

  15. Habib, M.T., Mia, M.J., Uddin, M.S., et al.: An in-depth exploration of automated jackfruit disease recognition. J. King Saud Univ. Comput. Inf. Sci. (2020)

    Google Scholar 

  16. Vakilian, K.A., Massah, J.: An artificial neural network approach to identify fungal diseases of cucumber (Cucumis sativus L.) plants using digital image processing. Arch. Phytopathol. Plant Prot. 46(13), 1580–1588 (2013)

    Google Scholar 

  17. Mokhtar, U., El-Bendary, N., Hassenian, A.E., Emary, E., Mahmoud, M.A., Hefny, H., Tolba, M.F.: SVM-based detection of tomato leaves diseases. In: Filev, D., et al. (eds.) Intelligent Systems’2014. Advances in Intelligent Systems and Computing, vol. 323. Springer, Cham (2015)

    Google Scholar 

  18. Habib, M.T., Majumder, A., Jakaria, A.Z.M., Akter, M., Uddin, M.S., Ahmed, F.: Machine vision based papaya disease recognition. J. King Saud Univ. Comput. Inf. Sci. 32(3), 300–309 (2020)

    Google Scholar 

  19. Lak, M.B., Minaei, S., Amiriparian, J., Beheshti, B.: Apple fruits recognition under natural luminance using machine vision. Adv. J. Food Sci. Technol. 2(6), 325–327 (2010)

    Google Scholar 

  20. Zhang, Y., Wu, L.: Classification of fruits using computer vision and a multiclass support vector machine. Sensors (Basel) 12(9), 12489–12505 (2012)

    Article  Google Scholar 

  21. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: DeepFruits: a fruit detection system using deep neural networks. Sensors 16(8), 1222 (2016)

    Article  Google Scholar 

  22. Hossain, M.S., Al-Hammadi, M., Muhammad, G.: Automatic fruit classification using deep learning for industrial applications. IEEE Trans. Ind. Inform. 15(2), 1027–1034 (2019)

    Google Scholar 

  23. Zawbaa, H.M., Hazman, M., Abbass, M., Hassanien, A.E.: Automatic fruit classification using random forest algorithm. In: 2014 14th International Conference on Hybrid Intelligent Systems, Kuwait, pp. 164–168 (2014)

    Google Scholar 

  24. Hou, L., Wu, Q., Sun, Q., Yang, H., Li, P.: Fruit recognition based on convolution neural network. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, pp. 18–22 (2016)

    Google Scholar 

  25. Zawbaa, H.M., Abbass, M., Hazman, M., Hassenian, A.E.: Automatic fruit image recognition system based on shape and color features. In: International Conference on Advanced Machine Learning Technologies and Applications, Nov 2014, pp. 278–290. Springer, Cham (2014)

    Google Scholar 

  26. Rocha, A., Hauagge, D.C., Wainer, J., Goldenstein, S.: Automatic fruit and vegetable classification from images. Comput. Electron. Agric. 70(1), 96–104 (2010)

    Article  Google Scholar 

  27. Sharmin, I., Islam, N.F., Jahan, I., Joye, T.A., Rahman, M.R., Habib, M.T.: Machine vision based local fish recognition. SN Appl. Sci. 1, 1529 (2019)

    Article  Google Scholar 

  28. Junayed, M.S.: Deep learning based approach for identification of local fish. Doctoral dissertation, Daffodil International University (2018)

    Google Scholar 

  29. Razmjooy, N., Mousavi, B.S., Soleymani, F.: A real-time mathematical computer method for potato inspection using machine vision. Comput. Math. Appl. 63(1), 268–279 (2012)

    Article  Google Scholar 

  30. Shi, X., Wu, X.: Tomato processing defect detection using deep learning. In: 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, pp. 728–732 (2019)

    Google Scholar 

  31. Hossain, S., Mou, R.M., Hasan, M.M., Chakraborty, S., Razzak, M.A.: Recognition and detection of tea leaf’s diseases using support vector machine. In: 2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA), Batu Feringghi, pp. 150–154 (2018)

    Google Scholar 

  32. Naikwadi, S., Amoda, N.: Advances in image processing for detection of plant diseases. Int. J. Appl. Innov. Eng. Manag. (IJAIEM) 2(11) (2013)

    Google Scholar 

  33. Ramesh, L., Nirmala, V.: Betel leaf disease classification using clustering method. J. Chem. Pharm. Sci. Spec. Issue 1, 193–196 (2017)

    Google Scholar 

  34. Jayanthi, S.K., Lalitha, C.: Betel leaf disease detection using histogram of oriented gradients and multiclass SVM. Int. J. Innov. Res. Comput. Commun. Eng. 5(8), 13994–14001 (2017)

    Google Scholar 

  35. Tamilsankar, P., Gunasekar, T.: Computer aided diseases identification for betel leaf. Int. Res. J. Eng. Technol. 2(9), 2577–2581 (2015)

    Google Scholar 

  36. Parikh, A., Raval, M.S., Parmar, C., Chaudhary, S.: Disease detection and severity estimation in cotton plant from unconstrained images. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, pp. 594–601 (2016)

    Google Scholar 

  37. Vijayakumar, J., Arumugam, D.S.: Early detection of powdery mildew disease for betelvine plants using digital image analysis. Int. J. Mod. Eng. Res. 2(4), 2581–2583 (2012)

    Google Scholar 

  38. Dey, A.K., Sharma, M., Meshram, M.R.: Image processing based leaf rot disease, detection of betel vine (Piper Betle L.). Procedia Comput. Sci. 85, 748–754 (2016)

    Article  Google Scholar 

  39. Kurniawati, N.N., Abdullah, S.N.H.S., Abdullah, S., Abdullah, S.: Investigation on image processing techniques for diagnosing paddy diseases. In: 2009 International Conference of Soft Computing and Pattern Recognition, Malacca, pp. 272–277 (2009)

    Google Scholar 

  40. Majid, K., Herdiyeni, Y., Rauf, A.: I-PEDIA: mobile application for paddy disease identification using fuzzy entropy and probabilistic neural network. In: 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, pp. 403–406 (2013)

    Google Scholar 

  41. Batule, V.B., Chavan, G.U., Sanap, V.P., Wadkar, K.D.: Leaf disease detection using image processing and support vector machine (SVM). J. Res. 2(02) (2016)

    Google Scholar 

  42. Naik, M.R., Sivappagari, C.M.R.: Plant leaf and disease detection by using HSV features and SVM classifier. Int. J. Eng. Sci. Comput. 6(12), 3794–3797 (2016)

    Google Scholar 

  43. Feng, Y., Ren, G., He, K., Liu, Y., Li, L.: RGB color channel variation based segmentation of crop leaf lesion. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, pp. 592–596 (2015)

    Google Scholar 

  44. Latte, M.V., Shidnal, S., Anami, B.S.: Rule based approach to determine nutrient deficiency in paddy leaf images. Int. J. Agric. Technol. 13(2), 227–245 (2017)

    Google Scholar 

  45. Abdullah, N.E., Rahim, A.A., Hashim, H., Kamal, M.M.: Classification of rubber tree leaf diseases using multilayer perceptron neural network. In: 2007 5th Student Conference on Research and Development, Selangor, Malaysia, pp. 1–6 (2007)

    Google Scholar 

  46. Barbedo, J.G.A.: Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2(1), 660 (2013)

    Article  Google Scholar 

  47. Vijayakumar, J., Arumugam, D.S.: Recognition of powdery mildew disease for betelvine plants using digital image processing. Int. J. Distrib. Parallel Syst. 3(2), 231 (2012)

    Article  Google Scholar 

  48. Shruthi, U., Nagaveni, V., Raghavendra, B.K.: A review on machine learning classification techniques for plant disease detection. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, pp. 281–284 (2019)

    Google Scholar 

  49. Alsmadi, M.K., Almarashdeh, I.: A survey on fish classification techniques. J. King Saud Univ. Comput. Inf. Sci. (2020)

    Google Scholar 

  50. Dubey, S., Jalal, A.: Application of image processing in fruit and vegetable analysis: a review. J. Intell. Syst. 24(4), 405–424 (2015)

    Article  Google Scholar 

  51. Bhargava, A., Bansal, A.: Fruits and vegetables quality evaluation using computer vision: a review. J. King Saud Univ. Comput. Inf. Sci. (2018)

    Google Scholar 

  52. Naik, S., Patel, B.: Machine vision based fruit classification and grading—a review. Int. J. Comput. Appl. 170(9), 22–34 (2017)

    Google Scholar 

  53. Ngan, H.Y.T., Pang, G.K.H., Yung, N.H.C.: Automated fabric defect detection—a review. Image Vis. Comput. 29(7), 442–458 (2011)

    Article  Google Scholar 

  54. Habib, M.T., Faisal, R.H., Rokonuzzaman, M., Ahmed, F.: Automated fabric defect inspection: a survey of classifiers. ArXiv, abs/1405.6177 (2014)

    Google Scholar 

  55. Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Ind. Electron. 55(1), 348–363 (2008)

    Article  Google Scholar 

  56. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural networks—a review. Pattern Recogn. 35(10), 2279–2301 (2002)

    Article  Google Scholar 

  57. Fruit 360: Available at https://www.kaggle.com/moltean/fruits. Accessed 07 Aug 2020

  58. Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), USA, Sept 2005

    Google Scholar 

  59. Shi, R., Ngan, K.N., Li, S., Paramesran, R., Li, H.: Visual quality evaluation of image object segmentation: subjective assessment and objective measure. IEEE Trans. Image Process. 24(12), 5033–5045 (2015)

    Article  MathSciNet  Google Scholar 

  60. Monteiro, F.C., Campilho, A.C.: Performance evaluation of image segmentation. In: Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol. 4141, pp. 248–259. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  61. Han, J., Kamber, M., Pei, J.: Data Mining Concept and Technique, 3rd edn., pp. 332–398. Morgan Kaufmann (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tarek Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habib, M.T., Arif, M.A.I., Shorif, S.B., Uddin, M.S., Ahmed, F. (2021). Machine Vision-Based Fruit and Vegetable Disease Recognition: A Review. In: Uddin, M.S., Bansal, J.C. (eds) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6424-0_10

Download citation

Publish with us

Policies and ethics