Skip to main content

Introduction to Computer Vision and Machine Learning Applications in Agriculture

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture

Abstract

Agricultural sustainability can be attained through vision-enabled autonomous machines that work together as a phenomenon to ensure global food security. The demand for efficient as well as reliable food production techniques is rapidly increasing day by day. Computer vision tagged with machine learning approaches grabbed considerable attention for research to meet this demand through analyzing and understanding the input images from humans, robots, drones, sensors, satellites, etc. This chapter gives insights into the integration of computer vision and machine learning as well as deep learning techniques for attaining increased agricultural productions. Additionally, with the help of the above-mentioned techniques different agricultural activities, such as crop health monitoring, weed, disease, pest detection, etc. have also been reviewed to overcome the current challenges and explore the future opportunities for smart farming with low cost and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: A review. Sensors 18(8), 1–29 (2018)

    Article  Google Scholar 

  2. Bochtis, D.D., Sørensen, C.G.C., Busato, P.: Advances in agricultural machinery management: A review. Biosys. Eng. 126, 69–81 (2014)

    Article  Google Scholar 

  3. Hunter, M., Smith, R., Schipanski, M., Atwood, L., Mortensen, D.: Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 67(4), 386–391 (2017)

    Article  Google Scholar 

  4. Wu, X., Guo, J., Han, M., Chen, G.: An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018)

    Article  Google Scholar 

  5. Aubert, B.A., Schroeder, A., Grimaudo, J.: IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54(1), 510–520 (2012)

    Article  Google Scholar 

  6. Gomes, J.F.S., Leta, F.R.: Applications of computer vision techniques in the agriculture and food industry: A review. Eur. Food Res. Technol. 235(6), 989–1000 (2012)

    Article  Google Scholar 

  7. Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J.: Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 156, 585–605 (2019)

    Article  Google Scholar 

  8. Mahajan, S., Das, A., Sardana, H.K.: Image acquisition techniques for assessment of legume quality. Trends Food Sci. Technol. 42(2), 116–133 (2015)

    Article  Google Scholar 

  9. Vithu, P., Moses, J.A.: Machine vision system for food grain quality evaluation: A review. Trends Food Sci. Technol. 56, 13–20 (2016)

    Article  Google Scholar 

  10. Kirk, D.B., Hwu, W.W.: “Programming Massively Parallel Processors,” A Hands-on Approach, 3rd edn. Morgan Kaufmann, San Francisco, CA, USA (2016)

    Google Scholar 

  11. Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., Avizzano, C.A.: Towards smart farming and sustainable agriculture with drones. Int. Conf. Intell. Environ. 140–143 (IEEE, 2015)

    Google Scholar 

  12. Wjtowicz, M., Wjtowicz, A., Piekarczyk, J.: Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 11(1), 31–50 (2016)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25(2), 1097–1105 (2012)

    Google Scholar 

  14. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, Boston, MA (2015).

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). Available Online: https://arxiv.org/pdf/1409.1556.

  16. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  17. Mavridou, E., Vrochidou, E., Papakostas, G.A., Pachidis, T., Kaburlasos, V.G.: Machine vision systems in precision agriculture for crop farming. J. Imaging 5(12), 1–32 (2019)

    Article  Google Scholar 

  18. Li, K., Lian, H., Deun, R.V., Brik, M.G.: A far-red-emitting NaMgLaTeO6:Mn4+ phosphor with perovskite structure for indoor plant growth. Dyes Pigm. 162, 214–221 (2019)

    Article  Google Scholar 

  19. Shimizu, H., Heins, R.: Computer-vision-based system for plant growth analysis. Trans. ASAE 38(3), 959–964 (1995)

    Article  Google Scholar 

  20. Tombe, R.: Computer vision for smart farming and sustainable agriculture. In: 2020 IST-Africa Conference (IST-Africa), Kampala, Uganda, pp. 1–8 (2020)

    Google Scholar 

  21. Maharlooei, M., Sivarajan, S., Bajwa, S.G., Harmon, J.P., Nowatzki, J.: Detection of soybean aphids in a greenhouse using an image processing technique. Comput. Electron. Agric. 132, 63–70 (2017)

    Article  Google Scholar 

  22. Xiaolong, L., Ma, Z., Bienvenido, F., Feng, Q., Haiguang, W., Álvarez-Bermejo, J.A.: Development of automatic counting system for Urediospores of wheat stripe rust based on image processing. Int. J. Agric. Biol. Eng. 10(5), 134–143 (2017)

    Google Scholar 

  23. Wang, G., Sun, Y., Wang, J.: Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 1–8 (2017)

    Google Scholar 

  24. Liu, H., Chahl, J.S.: A multispectral machine vision system for invertebrate detection on green leaves. Comput. Electron. Agric. 150, 279–288 (2018)

    Article  Google Scholar 

  25. Zhong, Y., Gao, J., Lei, Q., Zhou, Y.: A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors 18(5), 1–19 (2018)

    Article  Google Scholar 

  26. Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. 11(1), 908–915 (2011)

    Article  Google Scholar 

  27. Sabzi, S., Abbaspour-Gilandeh, Y., Garcia-Mateos, G.: A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput. Industry 98, 80–89 (2018)

    Google Scholar 

  28. Pantazi, X.E., Tamouridou, A.A., Alexandridis, T.K., Lagopodi, A.L., Kashefi, J., Moshou, D.: Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Comput. Electron. Agric. 139, 224–230 (2017)

    Article  Google Scholar 

  29. Muppala, C., Guruviah, V.: Machine vision detection of pests, diseases and weeds: A review. J. Phytol. 12, 9–19 (2020)

    Article  Google Scholar 

  30. Yuan, T., Xu, C.-G., Ren, Y.-X., Feng, Q.-C., Tan, Y.-Z., Li, W.: Detecting the information of cucumber in greenhouse for picking based on NIR image. Guang Pu Xue Yu Guang Pu Fen Xi 29(8), 2054–2058 (2009)

    Google Scholar 

  31. Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C, Zhang, Q.: Proof-of-concept of a robotic apple harvester. In: International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, Daejeon, pp. 634–639 (2016)

    Google Scholar 

  32. Zhang, Q., Chen, S., Yu, T., Wang, Y.: Cherry recognition in natural environment based on the vision of picking robot. IOP Conf. Series Earth Environ. Sci. 61(1), 1–6 (2017)

    Google Scholar 

  33. Patel, K.K., Kar, A., Jha, S.N., Khan, M.A.: Machine vision system: A tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 49(2), 123–141 (2012)

    Article  Google Scholar 

  34. Saldaña, E., Siche, R., Luján, M., Quevedo, R.: Review: Computer vision applied to the inspection and quality control of fruits and vegetables. Braz. J. Food Technol. 16(4), 254–272 (2013)

    Article  Google Scholar 

  35. Bhargava, A., Bansal, A.: Fruits and vegetables quality evaluation using computer vision: A review. J. King Saud Univ. Computer Inf. Sci. 1–15 (2018)

    Google Scholar 

  36. Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S., Nishii, R., Melgani, F.: Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. GigaScience 8(1), 1–12 (2018)

    Google Scholar 

  37. Li, Z., Guo, R., Li, M., Chen, Y., Li, G.: A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 176, 1–21 (2020)

    Article  Google Scholar 

  38. Chandra, A.L., Desai, S.V., Guo, W., Balasubramanian, V.N.: Computer vision with deep learning for plant phenotyping in agriculture: A survey. Adv. Comput. Commun. 1–27 (2020)

    Google Scholar 

  39. Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127, 418–424 (2016)

    Article  Google Scholar 

  40. Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 151, 61–69 (2018)

    Article  Google Scholar 

  41. Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y., Srinivasan, K.: Forecasting yield by integrating agrarian factors and machine learning models: A survey. Comput. Electron. Agric. 155, 257–282 (2018)

    Article  Google Scholar 

  42. van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 1–18 (2020)

    Google Scholar 

  43. Mohammadi, K., Shamshirband, S., Motamedi, S. Petkovic, D. Hashim, R., Gocic, M.: Extreme learning machine based prediction of daily dew point temperature. Comput. Electron. Agric. 117, 214–225 (2015)

    Google Scholar 

  44. Patil, A.P., Deka, P.C.: An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs. Comput. Electron. Agric. 121, 385–392 (2016)

    Article  Google Scholar 

  45. Mehdizadeh, S., Behmanesh, J., Khalili, K.: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput. Electron. Agric. 139, 103–114 (2017)

    Article  Google Scholar 

  46. Morellos, A., Pantazi, X.-E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., Wiebensohn, J., Bill, R., Mouazen, A.M.: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosys. Eng. 152, 104–116 (2016)

    Article  Google Scholar 

  47. Nahvi, B., Habibi, J., Mohammadi, K., Shamshirband, S., Razgan, O.S.A.: Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Comput. Electron. Agric. 124, 150–160 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shorif Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, M.S., Bansal, J.C. (2021). Introduction to Computer Vision and Machine Learning Applications in Agriculture. In: Uddin, M.S., Bansal, J.C. (eds) Computer Vision and Machine Learning in Agriculture. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6424-0_1

Download citation

Publish with us

Policies and ethics