Skip to main content

Abstract

Three-dimensional (3D) point light source (PLS) display have the disadvantage of being thick and bulky when enlarged. In this paper, modified the conventional 3D PLS display structure. A proposed method of thin PLS display has been developed by placing the SLM between the collimating lens and the lens array. An experiment was performed to create an elemental image of the proposed method that changed the structure of the conventional PLS display. As a result of the experiment, the proposed method created a 3D image similar to the 3D image created by the conventional PLS display in terms of viewing angle and resolution, which are the parameters of the PLS display. The proposed method that we are proposing changes the structure of the conventional PLS display, but the result is the same, with the advantage of having a thinner PLS display that can be made larger by reducing the thickness of the PLS display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipton, L.: Selection devices for field-sequential stereoscopic displays a brief history. SPIE 1457, 274–282 (1991)

    Google Scholar 

  2. Hodges, L.F.: Time-multiplexed stereoscopic computer graphics. IEEE Comput. Graphics Appl. 12(2), 20–30 (1992)

    Article  Google Scholar 

  3. Sandin, D.J., Margolis, T., Dawe, G., Leigh, J., DeFanti, T.A.: Varrier autostereographic display. SPIE 4297(5), 204–211 (2001)

    Google Scholar 

  4. Dodgson, N.A.: Autostereoscopic 3D displays. Computer 38(8), 31–36 (2005)

    Article  Google Scholar 

  5. Lippmann, G.: La Photographie Integrale. C. R. Academie Sci. 146, 446–451 (1908)

    Google Scholar 

  6. Lee, B., Park, J.H., Min, S.W.: Three-dimensional display and information processing based on integral imaging. In: Poon, T. (eds.) Digital Holography and Three-Dimensional Display. Springer, New York (2006)

    Google Scholar 

  7. Park, J.H., Kim, J., Bae, J.P., Kim, Y., Lee, B.: Viewing angle enhancement of three-dimension/two-dimension convertible integral imaging display using double collimated or noncollimated illumination. Jpn. J. Appl. Phys. 44, 991–994 (2005)

    Article  Google Scholar 

  8. Park, J.H., Min, S.W., Jung, S., Lee, B.: Analysis of viewing parameters for two display methods based on integral photography. Appl. Opt. 40, 5217–5232 (2001)

    Article  Google Scholar 

  9. Min, S.W., Javidi, B., Lee, B.: Enhanced three-dimensional integral imaging system by use of double display devices. Appl. Opt. 42, 4186–4195 (2003)

    Article  Google Scholar 

  10. Alam, A., Baasantseren, G., Erdenebat, M.U., Kim, N., Park, J.H.: Resolution enhancement of integral imaging three-dimensional display using multi-directional elemental images. J. Soc. Inform. Display 20(4), 175–234 (2012)

    Article  Google Scholar 

  11. Choi, H., Min, S.W., Jung, S., Park, J.H., Lee, B.: Multiple-viewing-zone integral imaging using a dynamic barrier array for threedimensional displays. Appl. Opt. 11, 927–932 (2003)

    Google Scholar 

  12. Dalkhaa, N.E., Densmaa, B., Baasantseren, G.: Nonuniform viewing angle of integral imaging display. J. Soc. Inform. Display 23, 457–463 (2015)

    Article  Google Scholar 

  13. Batbayar, D., Dalkhaa, N.E., Erdenebat, M.U., Kim, N., Baasantseren, G.: Point light source display with a large viewing angle using multiple illumination sources. Opt. Eng. 56(5), 053113(1–6) (2017)

    Google Scholar 

  14. Kim, Y., Kim, J., Kang, J.M., Jung, J.H., Choi, H., Lee, B.: Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Opt. Express 15, 18253–18267 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research has received funding from the National University of Mongolia under grant agreement P2019-3730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nomin-Erdene Dalkhaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalkhaa, NE., Chagnaadorj, BO., Namsraijaw, C., Baasantseren, G. (2021). Thin Point Light Source Display. In: Pan, JS., Li, J., Namsrai, OE., Meng, Z., Savić, M. (eds) Advances in Intelligent Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems and Technologies, vol 211. Springer, Singapore. https://doi.org/10.1007/978-981-33-6420-2_11

Download citation

Publish with us

Policies and ethics