Recommender Systems Beyond E-Commerce: Presence and Future

Part of the Studies in Rhythm Engineering book series (SRE)


Recommender systems are supporting users in the identification of items that fulfill their wishes and needs and are also helping to foster consumer happiness. These systems have been successfully applied in different application domains—examples thereof are the recommendation of movies, books, digital cameras, points of interest, financial services, and software requirements. The major objectives of this chapter are to provide an overview of recommendation approaches including criteria when to use which algorithm, to show different applications of recommendation algorithms going beyond standard e-commerce scenarios and to discuss issues for future research.


  1. Abdollahpouri, H., Burke, R., & Mobasher, B. (2017). Recommender systems as multistakeholder environments. 25th Conference on User Modeling, Adaptation, and Personalization (pp. 347–348). Bratislava, Slovakia.Google Scholar
  2. Adomavicius, G., Bockstedt, J., Curley, S., & Zhang, J. (2011). Recommender systems, consumer preferences, and anchoring effects. In: RecSys 2011 Workshop on Human Decision Making in Recommender Systems (pp. 35–42).Google Scholar
  3. Atas, M., Felfernig, A., Stettinger, M., & Tran T. (2017). Beyond item recommendation: Using recommendations to stimulate information exchange in group decisions. In: 9th International Conference on Social Informatics (SocInfo’17) (pp. 368–377). Oxford, UK.Google Scholar
  4. Barker, V., O’Connor, D., Bachant, J., & Soloway, E. (1989). Expert systems for configuration at digital: XCON and beyond. Communications of the ACM, 32(3), 298–318.CrossRefGoogle Scholar
  5. Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 52, 1–37.CrossRefGoogle Scholar
  6. Berkovsky, S., Freyne, J., Coombe, M., & Bhandari, D. (2010). Recommender algorithms in activity motivating games. ACM Conference on Recommender Systems (RecSys’09) (pp. 175–182).Google Scholar
  7. Berkovsky, S., Freyne, J., & Oinas-Kukkonen, H. (2012). Influencing individually: Fusing personalization and persuasion. ACM Transactions on Interactive Intelligent Systems, 2(2), 1–8.CrossRefGoogle Scholar
  8. Brocco M., & Groh, G. (2009). Team recommendation in open innovation networks. In ACM Conference on Recommender Systems (RecSys’09) (pp. 365–368). NY, USA.Google Scholar
  9. Burke, R., & Abdollahpouri, H. (2016). Educational recommendation with multiple stakeholders. IEEE/WIC/ACM International Conference on Web Intelligence, Workshops (pp. 62–63). NE, USA: Omaha.Google Scholar
  10. Burke, R., & Ramezani M. (2010). Matching recommendation technologies and domains. Recommender systems handbook(pp. 367–386).Google Scholar
  11. Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Systems, 69(32), 180–200.Google Scholar
  12. Chatzopoulou, G., Eirinaki, M., & Poyzotis, N. (2009). Query recommendations for interactive database exploration. In 21st Internationl Conference on Scientific and Statistical Database Management (pp. 3–18).Google Scholar
  13. Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Boston, MA: Harvard Business School Press.Google Scholar
  14. Chung, R., Sundaram, D., & Srinivasan, A. (2007). Integrated personal recommender systems. 9th ACM International Conference on Electronic Commerce (pp. 65–74). MN, USA: Minneapolis.Google Scholar
  15. Cosley, D., Lam, S., Albert, I., Konstan, J., & Riedl, J. (2003). Is seeing believing—how recommender system interfaces affect users’ opinions. In CHI03 (pp. 585–592).Google Scholar
  16. Cubranic, D., Murphy, G., Singer, J., & Booth, K. (2005). Hipikat: A project memory for software development. IEEE Transactions of Software Engineering, 31(6), 446–465.Google Scholar
  17. Dias, M., Locher, D., Li, M., El-Deredy, W., & Lisboa, P. (2008). The value of personalized recommender systems to e-business. In 2nd ACM Conference on Recommender Systems (RecSys’08) (pp. 291–294). Lausanne, Switzerland.Google Scholar
  18. Ducheneaut, N., Patridge, K., Huang, Q., Price, B., & Roberts, M. (2009). Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. 17th International Conference User Modeling, Adaptation, and Personalization (UMAP 2009) (pp. 295–306). Italy: Trento.Google Scholar
  19. Fakhraee, S., & Fotouhi, F. (2011). TupleRecommender: A recommender system for relational databases. 22nd International Workshop on Database and Expert Systems Applications (DEXA) (pp. 549–553). France: Toulouse.Google Scholar
  20. Falkner, A., Felfernig, A., & Haag, A. (2011). Recommendation technologies for configurable products. AI Magazine, 32(3), 99–108.CrossRefGoogle Scholar
  21. Fano, A., & Kurth, S. (2003). Personal choice point: helping users visualize what it means to buy a BMW. 8th International Conference on Intelligent User Interfaces (IUI 2003) (pp. 46–52). Miami, FL, USA.Google Scholar
  22. Faulring, A., Mohnkern, K., Steinfeld, A., & Myers, B. (2009). The design and evaluation of user interfaces for the RADAR learning personal assistant. AI Magazine, 30(4), 74–84.CrossRefGoogle Scholar
  23. Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: technologies and research issues. 10th ACM International Conference on Electronic Commerce (ICEC’08) (pp. 17–26). Innsbruck, Austria.Google Scholar
  24. Felfernig, A., Atas, M., Tran, I., Stettinger, M. (2016). Towards group-based configuration. In International Workshop on Configuration 2016 (ConfWS’16) (pp. 69–72). Toulouse, France.Google Scholar
  25. Felfernig, A., Boratto, L., Stettinger, M., & Tkalcic, M. (2018a). Group Recommender Systems. Springer.Google Scholar
  26. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan, E. (2009). Plausible repairs for inconsistent requirements. In IJCAI’09, (pp. 791–796). Pasadena, CA.Google Scholar
  27. Felfernig, A., Gruber, I., Brandner, G., Blazek, P., & Stettinger, M. (2018b). Customizing events with EventHelpR. In 8th International Conference on Mass Customization and Personalization (MCP-CE 2018) (pp. 88–91). Novi Sad, Serbia.Google Scholar
  28. Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S. (2013). Toward the next generation of recommender systems: applications and research challenges. In Multimedia services in intelligent environments, smart innovation, systems and technologies (pp. 81–98). Springer.Google Scholar
  29. Felfernig, A., Mandl, M., Pum, A., & Schubert, M. (2010). Empirical knowledge engineering: Cognitive aspects in the development of constraint-based recommenders. 23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2010) (pp. 631–640). Cordoba, Spain.Google Scholar
  30. Felfernig, A., Ninaus, G., Grabner, H., Reinfrank, E., Weninger, L., Pagano, D., & Maalej, W. (2013). An overview of recommender systems in requirements engineering. In Managing Requirements Knowledge (pp. 315–332). Springer.Google Scholar
  31. Felfernig, A., Reinfrank, F., & Ninaus, G. (2012). Resolving anomalies in feature models. 20th International Symposium on Methodologies for Intelligent Systems (pp. 1–10). Macau, ChinaGoogle Scholar
  32. Felfernig, A., Schubert, M., Zehentner, C. (2011). An efficient diagnosis algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing (AIEDAM), 25(2), 175–184.Google Scholar
  33. Felfernig, A., Stettinger, M., Atas, M., Samer, R., Nerlich, J., Scholz, S., Tiihonen, J., Raatikainen, M. (2018d). Towards utility-based prioritization of requirements in open source environments. In 26th IEEE Conference on Requirements Engineering (pp. 406–411). Banff, Canada: ACM.Google Scholar
  34. Felfernig, A., Stettinger, M., Wundara, M., & Stanik, C. (2019). Ai in public administration. In Handbuch e-Government (pp. 491–504). SpringerGoogle Scholar
  35. Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2006). An integrated environment for the development of knowledge-based recommender applications. International Journal of Electronic Commerce (IJEC), 11(2), 11–34.CrossRefGoogle Scholar
  36. Felfernig, A., Polat-Erdeniz, S., Uran, C., Reiterer, S., Atas, M., Tran, T., et al. (2018). An overview of recommender systems in the Internet of Things. Journal of Intelligent Information Systems (JIIS), 52, 285–309.CrossRefGoogle Scholar
  37. Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maalej, W., Pagano, D., et al. (2011). Group decision support for requirements negotiation. Springer Lecture Notes in Computer Science, 7138, 1–12.Google Scholar
  38. Fogg, B. J. (2003). Persuasive technology—Using computers to change what we think and do. Morgan Kaufmann Publishers.Google Scholar
  39. Foster, M., & Oberlander, J. (2010). User preferences can drive facial expressions: Evaluating an embodied conversational agent in a recommender dialog system. User Modeling and User-Adapted Interaction (UMUAI), 20(4), 341–381.CrossRefGoogle Scholar
  40. Fucci, D., C. Palomares, X. Franch, D. Costal, M. Raatikainen, M. Stettinger, Z. Kurtanović, T. Kojo, L. Koenig, A. Falkner, G. Schenner, F. Brasca, T. Männistö, A. Felfernig, and W. Maalej. Needs and challenges for a platform to support large-scale requirements engineering: a multiple-case study. In 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’18), pages 1–10, Oulu Finland, 2018.Google Scholar
  41. Garcia-Molina, H., Koutrika, G., & Parameswaran, A. (2011). Information seeking: convergence of search, recommendations, and advertising. Communications of the ACM, 54(11), 121–130.CrossRefGoogle Scholar
  42. Golbeck, J. (2009). Computing with social trust. Springer.Google Scholar
  43. Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information Tapestry. Communications of the ACM, 35(12), 61–70.CrossRefGoogle Scholar
  44. Hammer, S., Kim, J., André, E. (2010). MED-StyleR: METABO diabetes-lifestyle recommender. In 4th ACM Conference on Recommender Systems (pp. 285–288). Barcelona, Spain.Google Scholar
  45. Happel, H., & Maalej, W. (2008). Potentials and challenges of recommendation systems for software engineering. In International Workshop on Recommendation Systems for Software Engineering (pp. 11–15), Atlanta, GA, USA.Google Scholar
  46. Herlocker, J., Konstan, J., Riedl, J. (2000). Explaining collaborative filtering recommendations. In ACM Conference on Computer-Supported Cooperative Work (pp. 241–250). Philadelphia, PA, USA.Google Scholar
  47. Hoens, T., Blanton,M., Chawla N. (2010). Reliable medical recommendation systems with patient privacy. 1st ACM International Health Informatics Symposium (IHI 2010) (pp. 173–182). Arlington, Virginia, USA.Google Scholar
  48. Hofmann, H., & Lehner, F. (2001). Requirements engineering as a success factor in software projects. IEEE Software, 18(4), 58–66.CrossRefGoogle Scholar
  49. Holmes, R., Walker, R., & Murphy, G. (2006). Approximate structural context matching: An approach to recommend relevant examples. IEEE Transactions on Software Engineering, 32(12), 952–970.CrossRefGoogle Scholar
  50. Huang, Y., Chang, Y., Sandnes, F. (2010). Experiences with RFID-based interactive learning in museums. International Journal of Autonomous and Adaptive Communication Systems, 3(1), 59–74.Google Scholar
  51. Jameson, A., Willemsen, M., Felfernig, A., de Gemmis, M. Lops, P., Semeraro, G., & Chen, L. (2015). Human decision making and recommender systems. In Recommender Systems Handbook (pp. 619–655). Springer.Google Scholar
  52. Jannach, D., Bundgaard-Joergensen, U. (2007). SAT: A Web-based interactive advisor for ivestor-ready business plans. In International Conference on e-Business (ICE-B 2007) (pp. 99–106).Google Scholar
  53. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems—An introduction. Cambridge University PressGoogle Scholar
  54. Janssen, J., Broek, E., & Westerink, J. (2011). Tune in to your emotions: a robust personalized affective music player. User Modeling and User-Adapted Interaction (UMUAI), 22(3), 255–279.CrossRefGoogle Scholar
  55. Kapoor, N., Chen, J., Butler, J., Fouty, G., Stemper, J., Riedl, J., & Konstan. J. (2007). Techlens: a researcher’s desktop. In 1st Conference on Recommender Systems (pp. 183–184). Minneapolis, Minnesota, USA.Google Scholar
  56. Kersten, M., Murphy, G. (2010). Using task context to improve programmer productivity. In 14th ACM SIGSOFT Intl. Symposium on Foundations of Software Engineering (pp. 1–11).Google Scholar
  57. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77–87.CrossRefGoogle Scholar
  58. Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1), 101–123.CrossRefGoogle Scholar
  59. Konstan, J., & Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction (UMUAI), 22(1–2), 101–123.CrossRefGoogle Scholar
  60. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. IEEE Computer, 42(8), 30–37.CrossRefGoogle Scholar
  61. Lee, T., Park, Y., & Park, Y. T. (2008). A time-based approach to effective recommender systems using implicit feedback. Expert Systems with Applications, 34(4), 3055–3062.CrossRefGoogle Scholar
  62. Leitner, G., Fercher, A., Felfernig, A., & Hitz, M. (2012). Reducing the entry threshold of AAL systems: Preliminary results from Casa Vecchia. 13th Intlernational Conference on Computers Helping People with Special Needs (pp. 709–715). Linz, Austria.Google Scholar
  63. LeMay, M., Haas, J., & Gunter, C. (2009). Collaborative recommender systems for building automation. Hawaii International Conference on System Sciences (pp. 1–10). Waikoloa, Hawaii, USA.Google Scholar
  64. Li, W., Matejka, J., Grossmann, T., & Fitzmaurice, G. (2015). Deploying community commands: A software command recommender system case study. AI Magazine, 36(3), 19–34.CrossRefGoogle Scholar
  65. Lin, C., Shen, X., Chen, S., Zhu, M., & Xiao, Y. (2019). Non-compensatory psychological models for recommender systems. In: 33rd AAAI Conference on Artificial Intelligence (AAAI-19) (pp. 4304–4311). Honolulu, Hawaii, USAGoogle Scholar
  66. Linden, G., Smith, B. & York, J. (2003). Recommendations—Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80.Google Scholar
  67. Mandl, M., Felfernig, A., Tiihonen, J., & Isak, K. (2011). Status quo bias in configuration systems. 24th Intlernational Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2011) (pp. 105–114). Syracuse, NY, USA.Google Scholar
  68. Martin, F., Donaldson, J., Ashenfelter, A., Torrens, M., & Hangartner, R. (2011). The big promise of recommender systems. AI Magazine, 32(3), 19–27.CrossRefGoogle Scholar
  69. Masthoff, J. (2011). Group recommender systems: Combining individual models. Recommender Systems Handbook (pp. 677–702).Google Scholar
  70. McCarey, F., Cinneide, M., & Kushmerick, N. (2005). Rascal—A recommender agent for agile reuse. Artificial Intelligence Review, 24(3–4), 253–273.CrossRefGoogle Scholar
  71. McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B. & Nixon, P. (2006). Group recommender systems: a critiquing based approach. In International Conference on Intelligent User Interfaces (IUI’06) (pp. 267–269), Sydney, Australia.Google Scholar
  72. Misirli, A., Bener, A., & Kale, R. (2011). AI-based software defect predictors: applications and benefits in a case study. AI Magazine, 32(2), 57–68.CrossRefGoogle Scholar
  73. Mobasher, B., & Cleland-Huang, J. (2011). Recommender systems in requirements engineering. AI Magazine, 32(3), 81–89.CrossRefGoogle Scholar
  74. Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web sites. Machine learning, 27, 313–331.CrossRefGoogle Scholar
  75. Peischl, B., Zanker, M., Nica, M., & Schmid, W. (2010). Constraint-based recommendation for software project effort estimation. Journal of Emerging Technologies in Web Intelligence, 2(4), 282–290.CrossRefGoogle Scholar
  76. Pinxteren, Y., Gelijnse, G., & Kamsteeg, P. (2011). Deriving a recipe similarity measure for recommending healthful meals. 16th International Conference on Intelligent User Interfaces (pp. 105–114). Palo Alto, CA, USA.Google Scholar
  77. Polat Erdeniz, S., Felfernig, A., & Atas, M. (2019a). Learned constraint ordering for consistency based direct diagnosis. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 347–359). Graz, Austria.Google Scholar
  78. Polat-Erdeniz, S., Felfernig, A. Atas, M., & Samer, R. (2019b). Matrix Factorization based heuristics for constraint-based recommenders. In 34th ACM/SIGAPP Symposium on Applied Computing (ACM/SAC’19) (pp. 1655–1662). ACM: Limassol, Cyprus.Google Scholar
  79. Pribik, I., & Felfernig, A. (2012). Towards persuasive technology for software development environments: an empirical study. In Persuasive Technology Conference (Persuasive 2012) (pp. 227–238).Google Scholar
  80. Ramiez-Gonzales, G., Munoz-Merino, P., & Delgado, K. (2010). A collaborative recommender system based on space-time similarities. IEEE Pervasive Computing, 9(3), 81–87.CrossRefGoogle Scholar
  81. Ramos, C., Augusto, J., & Shapiro, D. (2008). Ambient intelligence—The next step for artificial intelligence. IEEE Intelligent Systems, 23(2), 15–18.CrossRefGoogle Scholar
  82. Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal, 23(1), 57–95.MathSciNetzbMATHGoogle Scholar
  83. Robillard, M., Walker, R., & Zimmermann, T. (2010). Recommendation systems for software engineering. IEEE Software, 27(4), 80–86.CrossRefGoogle Scholar
  84. Roy, L., & Mooney, R. (2004). Content-based book recommending using learning for text categorization. User Modeling and User-Adapted Interaction, 14(1), 37–85.Google Scholar
  85. Sabin, D., & Weigel, R. (1998). Product configuration frameworks—A survey. IEEE Intelligent Systems, 14(4), 42–49.CrossRefGoogle Scholar
  86. Samer, R., Atas, M., Felfernig, A., Stettinger, M., Falkner, A. & Schenner, G. (2018). Group decision support for requirements management processes. In 20th Workshop on Configuration (pp. 19–24). Graz, Austria.Google Scholar
  87. Samer, R., Stettinger, M., Atas, M., Felfernig, A., Ruhe, G., & Deshpande, G. (2019). New approaches to the identification of dependencies between requirements. In 31st International Conference on Tools with Artificial Intelligence (ICTAI’19) (pp. 1265–1270). Portland, OR, USA: IEEE.Google Scholar
  88. Schafer, J., Konstan, J., & Riedl, J. (2011). E-commerce recommendation applications. Journal of Data Mining and Knowledge Discovery, 5(1–2), 115–153.zbMATHGoogle Scholar
  89. Smyth, B. (2018). Fast starters and slow finishers: A large-scale data analysis of pacing at the beginning and end of the marathon for recreational runners. Journal of Sports Analytics, 4(3), 229–242.CrossRefGoogle Scholar
  90. Sommerville, I. (2007). Software Engineering. Pearson.Google Scholar
  91. Stanik, C., & Maalej, W. (2019). Requirements intelligence with OpenReq analytics. In 27th International Requirements Engineering Conference (RE’19) (pp. 482–483). Jeju Island, South Korea: IEEE.Google Scholar
  92. Stettinger, M., Felfernig, A., Leitner, G., & Reiterer, S. (2015). Counteracting anchoring effects in group decision making. 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15) (pp. 118–130). Dublin, Ireland.Google Scholar
  93. Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S., Jeran, M. (2015). Counteracting serial position effects in the CHOICLA group decision support environment. In 20th ACM Conference on Intelligent User Interfaces (IUI2015) (pp. 148–157). Atlanta, Georgia, USA.Google Scholar
  94. Stettinger, M., Felfernig, A., Pribik, I., Tran, I., Samer, R., et al. (2020). KnowledgeCheckR: Intelligent techniques for counteracting forgetting. In 24th European Conference on AI, Santiago de Compostela, Spain.Google Scholar
  95. Tayebi, M., Jamali, M., Ester, M., Glaesser, U., & Frank, R. (2011). Crimewalker: A recommender model for suspect investigation. In ACM Conference on Recommender Systems (RecSys’11) (pp. 173–180). Chicago, IL, USA.Google Scholar
  96. Teppan, E., & Felfernig, A. (2012). Minimization of decoy effects in recommender result sets. Web Intelligence and Agent Systems, 1(4), 385–395.CrossRefGoogle Scholar
  97. Terveen, L., & Hill, W. Beyond Recommender systems: helping people help each other. In HCI in the New Millennium (pp. 487–509). Addison-Wesley.Google Scholar
  98. Thiesse, F., & Michahelles, F. (2009). Building the Internet of Things using RFID. IEEE Internet Computing, 13(3), 48–55.CrossRefGoogle Scholar
  99. Thorleuchter, D., VanDenPoel, D., & Prinzie, A. (2010). Mining ideas from textual information. Expert Systems with Applications, 37(10), 7182–7188.CrossRefGoogle Scholar
  100. Tran, T., Atas, M., Le, V., Samer, R., & Stettinger, M. (2019). Towards social choice-based explanations in group recommender systems. 27th ACM Conference on User Modeling, Adaptation and Personalization (pp. 13–21). Larnaca, Cyprus.Google Scholar
  101. Tran, T., Atas, M., Felfernig, A., & Stettinger, M. (2018). An overview of recommender systems in the healthy food domain. Journal of Intelligent Information Systems (JIIS), 50, 61–70.Google Scholar
  102. Tuzhilin, A., Koren, Y. (2008). 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Price Competition (pp. 1–340).Google Scholar
  103. Wilson, D., Leland, S., Godwin, K., Baxter, A., Levy, A., Smart, J., et al. (2009). SmartChoice: An online recommender system to support low-income families in public school choice. AI Magazine, 30(2), 46–58.CrossRefGoogle Scholar
  104. Winoto, P., & Tang, T. (2010). The role of user mood in movie recommendations. Expert Systems with Applications, 37(8), 6086–6092.CrossRefGoogle Scholar
  105. Wobcke, W., Krzywicki, A., Kim, Y., Cai, X., Bain, M., Compton, P., et al. (2015). A deployed people-to-people recommender system in online dating. AI Magazine, 36(3), 5–18.CrossRefGoogle Scholar
  106. Xu, S., Jiang, H., & Lau, F. (2008). Personalized online document, image and video recommendation via commodity eye-tracking. In ACM Conference on Recommender Systems (RecSys’08) (pp. 83–90).Google Scholar
  107. Yuan, N., Zheng, Y., Zhang, L., & Xie, X. (2012). T-finder: A recommender system for finding passengers and vacant taxis. IEEE Transactions on Knowledge and Data Engineering (TKDE), 1–14.Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Institute of Software Technology, Applied Artificial Intelligence, TU GrazGrazAustria

Personalised recommendations