Skip to main content

Steviosides (Diterpenoids)

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 367 Accesses

Abstract

Diterpenoids are 20 carbon terpenes (four C5 units) belong to secondary metabolites, associated with defense activities in plants. Some of the diterpenoids are super sweet in taste with negligible or zero calorie energy and ingrained with antioxidant, antifungal and antibacterial attributes. The following diterpenoids – super sweet principles have been identified so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinghorn, A. D. and Soejarto, D. D., (1985). Current status of stevioside as a sweetening agent for human use. in: Economic and Medicinal Plant Research, Vol. 1. Wagner, H., Hikino. H., and Farnsworth, N. R., Eds., Academic Press, chap. 1 London 1 – 52.

    Google Scholar 

  2. Kazuyama, S., (1979). Present status of natural sweeteners from Stevia. Shokuhin Kagaku, 21 (4), 90.

    Google Scholar 

  3. Soejarto, D. D., Compadre, C. M., Medon, P. J., Kamath, S. K., & Kinghorn, A. D., (1983) Potential sweetening agents of plant origin. H. Field search for sweet – tasting stevia species. Econ. Bot., 37, 74.

    Google Scholar 

  4. Isima, N. & Kakayama, O., (1976). Sensory evaluation of stevioside as a sweetener, Shokuhin Sogo Kenkyusho Kenkyu Hokokul, 31, 80 Chem. Abstr., 87. 182752y, 1977.

    Google Scholar 

  5. Prakash, I., Avetik Markosyan & Cynthia Bunders (2014). Development of next generation stevia sweetener rebaudioside M. Food 3, 162 – 175; https://doi.org/10.3390/food3010162.

  6. Kinghorn, A.D.; Kim, N. – C.; & Kim, D.H.L. (1999). Terpenoid glycoside sweeteners. In Naturally Occurring Glycosides; Ikan, R., (Ed.), John Wiley & Sons: New York, NY, USA, pp. 399 – 429.

    Google Scholar 

  7. Prasash, I.; DuBois, G.E.; Clos, J. F.; Wilkens, K.L.; & Fosdick, L.E. (2008). Development of Rebiana, a natural, non-caloric sweetener. Food Chem. Toxicol 46, S75 – S 82.

    Google Scholar 

  8. Steviol Glycosides, Prepared at the 73rd JECFA (2010) and Published in FAO JECFA Monographs 10 (2010), Superseding Specifications Prepared at the 69th JECFA (2008) and Published in FAO JECFA Monographs 5 (2008). An ADI of 0 – 4 mg/kg bw (Expressed as Stevoil) was Established at the 69th JECFA (2008). Available online: http://www.fao.org/ag/agn/jecfa-additives/specs/monograph10/additive-442-m10.pdf (accessed on 1 November 2013).

  9. FAO JECFA Monograph 4 (2007) 68th JECFA 2007 meetig in combined comedian of food additive specifications. FAOJECFA Monograph 1 (2005).

    Google Scholar 

  10. Abou – Arab, A. K., Abou – Arab, A. Z. & Abu – Salem, M. F. (2010). Physicochemical assessment of natural sweeteners steviosides produced from S. rebaudiana Bertoni plant. African J. Food Sci. 4 (5), 269 – 281.

    Google Scholar 

  11. Brandle, J. E., Starratt, A. N., & Gijzen, M., (1998). Stevia rebaudiana: its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78, 527 – 536.

    Google Scholar 

  12. David, J. M., and Andrew, H. R. (2002) A new rural industry stevia to replace imported chemical sweeteners. RIRDC web publication No WO2/022 RIRDC Project No UCQ – 16A. P 50.

    Google Scholar 

  13. Tanaka, O. (1985) Application of C-nuclear magnetic resonance spectrometry to structural study on glycosides saponins of panax spp. and natural sweet glycosides. Yakugaku Zasshi, 105(4), 323 – 351.

    Google Scholar 

  14. Brandle, J. E., & Telmer, P. G. (2007). Steviol glycoside biosynthesis. Phytochemistry 68 1855 – 1863.

    Google Scholar 

  15. Alves, L. M., (1975) The Gibberelllin and the Gibberellin-Like Substances of Stevia Rebaudiana Bertoni, (1975). The University of Chicago. P. 00001.

    Google Scholar 

  16. Alves, L. M., and M. Ruddat, (1978) The presence of gibberellins A20 in Stevia rebaudiana. Annual Report 1976 – 77, Tainan, Taiwan, 1978.

    Google Scholar 

  17. Chen, M., et al., (1983) Observation of the leaf cell vacuole of Stevia rebaudiana Bertoni under the electron microscope. Acta Botanica Sinica, 25(5): p. 426 – 430.

    Google Scholar 

  18. Soejarto, D. D., (2002). Ethanobotanty of Stevia and Stevia rebaudiana. In: Kinghorn, A. D. (Ed). Stevia: The Genus Stevia. Taylor and Francis, London and New York, pp. 40 – 67.

    Google Scholar 

  19. Starratt, A. N., Kirby, C. W., Pocs, R., & Brandle, J. E., (2002). Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry 59, 367 – 370.

    Google Scholar 

  20. Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C. A., Hecht, S., Zenk, M. H., Bacher, A., 2000a. Biosynthesis of terpenoids: 4 – diphosphocytidyl -2C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 6451 – 6456.

    Google Scholar 

  21. Bennett, R. D., Lieber, E. R., & Heftmann, E., (1967). Biosynthesis of steviol from ( - ) kaurene. Photochemistry t, 1107 – 1110.

    Google Scholar 

  22. Hanson, J. R., and White, A. F., (1968). Studies in terpenoid biosynthesis II: the biosynthesis of steviol. Phytochemisty 7, 595 – 530.

    Google Scholar 

  23. Totte, N., Charon, L., Rohmer, M., Compernolle, F., Baboeuf, I. & Geuns, J.M.C., (2000). Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana pathway. TEtrahederon Lett. 41, 6407 – 6410.

    Google Scholar 

  24. Laule, O., Furholz, A., Chang, H, -S., Zhu, T., Wang, X., Heifetz, P. B., Gruissem, W., Lange, B. M., (2003). Cros stalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Porc. Natl. Acad. Sci. USA 100, 6866 – 6871.

    Google Scholar 

  25. Lang, B. M., Wildung, M.R., McCaskill, D., Croteau, R., 1998. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate – independent pathway. Proc. Natl. Acad. Sci. USA 95, 2100 – 2104.

    Google Scholar 

  26. Totte, N., Van den Ende, W., Van Damme, E. J. M., Compernolle, F., Baboeuf, I., Genus, J. M. C. (2003). Cloning and heterologous expression of early genes is gibberellins and steviol biosynthesis via the methylerythritol phosphate pathway in Stevia rebaudiana. Can. J. Bot. 81, 517 – 522.

    Google Scholar 

  27. Lange, B. M., and Croteau, R., (1999). Isoprenoid biosynthesis via a mevalonate – independent pathway in plants cloning and heterologous expression of 1 – deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint. Arch. Biochem Bi9ophys. 365, 170 – 174.

    Google Scholar 

  28. Richman, A. S., Gijzen, M., Starratt, A. N., HYang, Z. & Brandle, J. E., (1999). Diterpene synthesis in Stevia rebaudiana: recruitment and up – regulation of key enzymes from the gibberellins biosynthetic pathway. Planta J. 19, 411 – 421.

    Google Scholar 

  29. Hsieh, M. H. and Goodman, H. M., (2006). Functional evidence for the involvement of Arabidopsis IspF homolog in the nonmevalonate pathway of plastid isoprenoid biosynthesis. Planta 223, 779 – 784.

    Google Scholar 

  30. Querol, J., Campos, N., Imperial, S., Boronat, A., & Radriguez – Concepcion, M., (2002). Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett. 514, 343 0 346.

    Google Scholar 

  31. McGarvey, D. J., and Croteau, R., (1995). Terpenoid metabolism. Plant Cell 7, 1015 – 1026.

    Google Scholar 

  32. Hedden, P., Phillips, A. L., (2000). Gibberelllin metabolism: new insights revealed by the genes. Trends Plant Sci. 5, 523 – 530.

    Google Scholar 

  33. Alves, L. M., and Ruddat, M., (1979). The presence of gibberellins A20 in Stevia rebaudiana and its significance for the biological activity of steviol. Plant Cell Physiol. 20, 123 – 130.

    Google Scholar 

  34. Helliwell, C. A., Poole, A., Peacock, W. J., & Dennis, E.S., (1999), Arabiodopsis ent-kaurene oxidase catalyzes three steps of gibberellins biosynthesis. Plant Physiol. 119, 507 – 510.

    Google Scholar 

  35. Humphrey, T. V., Richman, A. S., Menassa, R., Brandle, J. E., (2006). Spatial organisation of four enzymes from Stevia rebaudiana that are involved in Steviol glycoside synthesis. Plant Mol. Biol. 61, 47 – 62.

    Google Scholar 

  36. Richman, A., Swanson, A., Humphrey, T., Chapman, R., McGarvey, B., Pocs, R. & Brandle, J., (2005). Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 41, 56–67.

    Google Scholar 

  37. Helliwell, C. A., Sullivan, J. A., Mould, R. M., Gray, J. C., Peacock, W. J., & Dennis, E.S., (2001). A plastid envelop location of Arabidopsis entkaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellins biosynthesis pathway. Plant J. 28, 201 – 208.

    Google Scholar 

  38. Kim, K. K., Sawa, Y., & Shibata, H., (1996). Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni – purification and partial characterization of the enzyme. Arch. Biochem. Biophys. 332, 223 – 230.

    Google Scholar 

  39. Brandle, J. E., Richman, A., Swanson, A. K., & Chapman, B. P., (2002). Leaf Ests from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis. Plant Mol. Biol. 50, 613 – 622.

    Google Scholar 

  40. Pompon, D., Louerat, B., Bronine, A., & Urban, P., (1996). Yeast expression of animal and palnt P450s in optimized redox environments. Methods Enzymol. 272, 51 – 64.

    Google Scholar 

  41. Shibata, H., Sonoke, S., Ochiai, H., Nishihashi, H. & Yamada, M., (1991). Glucosylation of steviol and steviol – glucosides in extracts from stevia rebaudiana Bertoni. Plant Physiol. 95, 152 – 156.

    Google Scholar 

  42. Hansen, K. S., Kristensen, C., Tattersall, D. B., Jones, P. R., Olsen, C.E., Bak, S., & Moller, B. L., (2003). The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrins glucosyltranferase from Sorghum bicolour. Phytochemistry 64, 143 – 151.

    Google Scholar 

  43. Lim, S. K., Higgins, G. S. L., & Bowles, D. J. (2003). Regioselectivity of glucosylation of caffeic acid by UDP – glucosyl transferase in plants. Biochem. J. 373, 987 – 992.

    Google Scholar 

  44. Fukuchi – Mizutani, M. Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura – Sakakibara, K., Kusumi, T., Hase, T., & Tanaka, Y., (2003). Biochemical and molecular characterization of a novel UDP glucose an thocyanin 3’O – glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant physiol. 132, 1652 – 1163.

    Google Scholar 

  45. Chan, P., Tomlinson, B., Chen, Y. J., Liu, J. C., Hsieh, M. H. & Cheng, J. T. (2000), Br. J. Clin. Pharamcol., 50, 215 – 220.

    Google Scholar 

  46. Martinoia, E., Massonneau, A. & Frangne, N., (2000). Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175 – 1186.

    Google Scholar 

  47. Grotewold, E., (2004). The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219, 906 – 909.

    Google Scholar 

  48. Synder, B. A. and Nicholson, R. L., (1990). Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248, 1637 – 1639.

    Google Scholar 

  49. Jorgensen, K., Rasmussen, A. V., Morant, M., Nielsen, A. H., Bjaranholt, N., Zagrobelny, M., Bak, S. & Moller, B. L., (2005). Metababolon formation and metabolic channelling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280 – 291.

    Google Scholar 

  50. Schmitt, L. and Tampe, R., 2002. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754 – 760.

    Google Scholar 

  51. Bartholomew, D. W., Van Dyk, D. E., Lau, S.M., O’Keefe, D.P., Rea, P.A. & Vitanen, P.V., (2002). Alternate energy – dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol. 130, 1562 – 1572.

    Google Scholar 

  52. Zairisman, A. A. Alfa, & O. Atmawinata, (1985) Determination of stevioside and rebaudioside-A in stevia. Menara Perkebunan. 53(4): p. 121 – 123.

    Google Scholar 

  53. DuBois DE, & Stephenson RA (1985). Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogues with improved organolyptic properties. J. Med. Chem. 28: 93 – 98.

    Google Scholar 

  54. Gardana, C., Scaglianti, M., & Simonetti, P. (2010). Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry. Jouranl of Chromotagraphy A, 1217, 1463 – 1470.

    Google Scholar 

  55. Geuns, J. M. C. (2003). Stevioside. Phytochemistry 6 4, 913 – 921.

    Google Scholar 

  56. Dwivedi, R. S. (2005). Screening of sugarcane varieties and super sweet plants for sodicity tolerance. World Bank Project Final Report. IISR, Lucknow. India. Pp158.

    Google Scholar 

  57. Roberto, L. M., Antonio, V. G., Liliana, Z. B., & Kong, A. H. (2012) Stevia rebaudiana Bertoni, source of a high potency natural sweetener: A comprehensive review on biochemical, nutritional and functional aspects. Food chemistry 132, 1121 – 1132.

    Google Scholar 

  58. Carakostas, M., Curry, L., Boileau, A, & Brusick, D. (2008). Overview: The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside for use in food and beverage. Food and chemical Toxicology 46, S1 – S10.

    Google Scholar 

  59. Pezzuto, J. M., Compadre, C.M., Swanson, S. M., Nanayakkara, D. & Kinghorn, A. D., (1985). Metabolically activated steviol, the aglycone of stevioside, is mutagenic. Proc. Natl. Acad. Sci. USA 82, 2478 – 2482.

    Google Scholar 

  60. Suttajit, M., Viniketkaumnuen, U., Meevatee U. & Buddhasukh, D., (1993). Mutagenicity and human chromosomal effect of stevioside, a sweetener from Stevia rebaudiana Bertoni. Environ. Health Perspect. 101, 53 – 56.

    Google Scholar 

  61. Toyoda, K., Matsui, H., Shoda, T., Uneyama, C. & Takahashi, M., (1997). Assessment of the carcinogenicity of stevioside in F344 rats. Food Chem. Toxicol., 35, 597 – 603.

    Google Scholar 

  62. FSANZ, Food Standards Australia New Zealand, (2008). Final Assessment Report, Application A540, Steviol Glycosides as Intense Sweeteners.

    Google Scholar 

  63. Barriocanal, L. A., Palacios, M., Benitez, S., Jimenez, J. T., Jimenez, N., Rojas, V., (2008). Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive and in Type 1 and Type 2 diabetics. Regul. Toxicol. Pharmacol. 51, 37 – 41.

    Google Scholar 

  64. Kraska, R. C., Me Quate & Soni, M. G. (2011). Safety data for stevioside Rebonside A. Grass assessment GLG – Life Tach. Corporation, Rebaudioside A (> 95%) p. 24 of 112.

    Google Scholar 

  65. WHO, 2006. Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additive Series; 54. Safety evaluation of certain food additives. Steviol Glycosides, pp. 117 – 144.

    Google Scholar 

  66. WHO, (2008). Joint FAO/WHO Expert Committee on Food Additives. 69th Meeting, Summary and Conclusions, Steviol Glycosides. Issued July 4, 2008.

    Google Scholar 

  67. Cargill GRAS Notification for Rebaudioside A, (2008). Submitted to the US Food and Drug Administration Washington, DC and identified as GRAS Notification 253. See FDA website at http://www.cfsan.fda.gov/-rdb/opa-grsn.html.

  68. Madhumita, K. and Sheela, C. (2014). Stevia rebaudiana Beyond sweetness (ed. Nidhi Gupta). Hand book of Midicinal plant and their bioactive compound- ISBN, 978 – 81 – 308 – p 548 – 1. P 11 – 26.

    Google Scholar 

  69. Stevia – Wikipedia (2017) https://en.wikipedia.org/wiki/stevia (retrived6.1.2017).

  70. Dwivedi, R. S. (1999). Unnurtured and untapped super sweet non – sacchariferous plant species in India. Current Sci. 76, 1454 – 1461.

    Google Scholar 

  71. Bertoni, M. S. (1918) Stevia rebaudiana. Stevia rebaudin new sweetening substances Anal 1261 cient paraguayas2, 129 – 134.

    Google Scholar 

  72. Bertoni, M. S. (1899). EI Kaa-Hee (Eupatorium rebaudianum, species Novas). Revista de 1258 Agronomia 1, 35–37.

    Google Scholar 

  73. Bertoni, M. S. (1905). La Kaa He e-Sa nature et ses proprietes. Anal cient paraguayos 5, 1–14.

    Google Scholar 

  74. Bertoni, M. S. (1927) Agenda and mentor Agricola; guiadel agriculture and colono. In 1263 EXSYLVIS, 4th ed. 51. Impresnay Edicion Puerto Bortoni.

    Google Scholar 

  75. Sunk, T. (1975). Studies on Stevia rebaudiana like Edulcorante. Japan J. Crop Sci.

    Google Scholar 

  76. Fors, A. I. (1995). A new character in the sweetener scenarioe. Sugar J. 58, 30.

    Google Scholar 

  77. Shock, C. C., (1982) Rebaudi’s stevia: natural noncaloric sweeteners. California Agriculture, 1982. 36(9): p. 45.

    Google Scholar 

  78. Dzyuba, O. O., (1989) Stevia rebaudiana (Bertoni) Hemsley – a new source of natural sugar 1270 substitute for Russia. Rastitel’Nye Resursy, 34(2): p. 86 – 95.

    Google Scholar 

  79. Midmore, D.J., and Rank, A.H. (2002). A new rural industry stevia to replace imported chemical sweeteners, RIRDC Pub No. W02/22, p. 55.

    Google Scholar 

  80. Allam, A. I., Nassar, A. M., & Besheit, S. Y. (2001). nile.enal.sci.eg /ArcJournal /uga.htm. 1277 Alvarez, M. (1984). Stevia rebaudiana Bert. estado atual do conhecimento, p. 118

    Google Scholar 

  81. Ramesh, K., Singh, V. & Megeji, N. W. (2006) cultivation of stevia (Stevia rebandiana (Bert.) 1279 Bertoni) A comprehensive review. Advances in Agronomy. 89, 137 – 177.

    Google Scholar 

  82. Papunidze, G., Kalandiya, A., Vanidze, M., & Papunidze, M. (2002). Sweet diterpene 1281 glycosides of stevia (Stevia rebaudiana Bertoni). Moambe 166.

    Google Scholar 

  83. Fronza, D., and Folegatti, M. V. (2003). Water consumption of the stevia (Stevia rebaudiana 1283 (Bert.) Bertoni) crop estimated through microlysimeter. Scientia Agricola 60.

    Google Scholar 

  84. Gvasaliya, V. P., Kovalenko, N. V., & Garguliya, M. Ch. (1990). Studies on the possibility of growing honey grass in Abkhazia conditions. Subtropocheskie Kultury 5, 149–156.

    Google Scholar 

  85. Lee, J. I., Kang, K. H., Park, H. W., Ham, Y. S., & Park, C. H. (1980). Studies on the new sweetening source plant, Stevia rebaudiana in Korea. II. Effects of fertilizer rates and planting density on dry leaf yields and various agronomic characteristics of Stevia rebaudiana. Research Reports of the OYce of Rural Development (Crop Suwon) 22, 138–144.

    Google Scholar 

  86. Cerna, K. (2000). Physiological changes in Stevia rebaudiana (Bertoni) leaves caused by root sphere conditions. In “Abs. 4th Intrnational Conference on Ecophysiology of Plant Production Processes in Stress Conditions,” September 12–14, Rackova dolina, Slovakia.

    Google Scholar 

  87. Nepovim, A., Drahosova, H., Valicek, P., & Vanek, T. (1998a). The effect of cultivation conditions on the content of stevioside in Stevia rebaudiana Bertoni plants cultivated in the Czech Republic. Pharma. Pharmacol. Lett. 8, 19–21.

    Google Scholar 

  88. Lovering, N. M., and Reeleeder, R. D. (1996). First report of Septoria steviae on stevia (Stevia rebaudiana) in North America. Plant Dis. 80, 959.

    Google Scholar 

  89. Kornienko, A. V., Nikov, I. M. N., Udovidcheko, L. P., Bezler, N. V., Kurakov, V. I., Zhuzhalova, T. P., and Znamenskaya, V. V. (1995). Stevia cultivation. Sakharnaya Svekla 10, 22–24.

    Google Scholar 

  90. Goenadi, D. H. (1987). Effect of slope position on growth of Stevia rebaudiana in Indonesia. Communications in Plant Science and Analysis 18, 1317–1328.

    Google Scholar 

  91. Basuki, S. (1990). Effects of black plastic mulch and plant density on the growth of weeds and stevia. BIOTROP special publication 38, 107–113.

    Google Scholar 

  92. Stefanini, M., B., & Rodrigues, S. D. (1999). Biomass yield of Stevia rebaudiana (Bert.) Bertoni as affected by gibberellic acid. Revista Brasileira de Plantas Medicinais 1, 35–43.

    Google Scholar 

  93. Cabanillas, C., and Diaz, M. P. (1996). Analisis de los factores temperature y luz a lo largo deltiempo sobre de poder germinativo de Stevia rebaudiana. In “Resumens X congresom nacional de Recursos Naturales, Aromaticos y medicinales,” p. 46. La plata, Argentina.

    Google Scholar 

  94. Kinghorn, A. D. (1982). Food In gradient safety review. Stevia rebaudiana leaves. Herb Research Foundation Boulder Co. USA.

    Google Scholar 

  95. Blumenthal, M. (1996). Perspectives of FDA’S new Stevia Policy. After four years, the agency lifts it ban-but only partially. Whole Foods Magazine. Febraury 1 – 5.

    Google Scholar 

  96. Katayama, O., Sumida, T., Hayashi. H., & Mitsuhashi. H. (1976). The practical application of Stevia and research and development data (pp. 747). Japan: I.S.U. Company.

    Google Scholar 

  97. Lester, T. (1999). Stevia rebaudiana. Sweet leaf. The Australian New Crops Newsletter 11, 1.

    Google Scholar 

  98. Jia, G. N. (1984). An experiment on the cultivation of Stevia rebaudiana (Bert.). Shanxi Agricultural Science Shanxi Nongye Kexue 1, 20–21.

    Google Scholar 

  99. Borie, K. B. (2000). Sweet Stevia: Nature’s own non-caloric sweetener: One leaf. . . Or two. National Gardening Association. http://doityourself.com.

  100. Andolfi, L., Ceccarini, L., & Macchia, M. (2002). Bio-agronomic characteristics of Stevia rebaudiana. Informatore Agrario 58, 48–51.

    Google Scholar 

  101. Marcavillaca, C. (1985). Micropropogation in vitro de Stevia rebaudiana por medio de segmentos nodales y meristemas Anales de SAIPA, 6, pp. 241–243. Buenos, Argentina.

    Google Scholar 

  102. Chalapathi, M. V., Thimmegowda, S., Rama Krishna Prama, V. R., & Prasad, T. G. (1997b). Natural non-calorie sweetener stevia (Stevia rebaudiana Bertoni): A future crop of India. Crop Res. 14, 347–350.

    Google Scholar 

  103. Chalapathi, M. V., Thimmegowda, S., Kumar, N. D., Rao, G. G. E., & Mallikarjuna, K. (2001). Influence of length of cutting and growth regulators on stevia (Stevia rebaudiana Bertoni). Crop Res. 21, 53 – 56.

    Google Scholar 

  104. Ibrahim, I., Nasr, M., Mohammed, B, & El – zfzafi, M. (2008). Nutrient factor affecting in vitro conditions of Stevia rebaudiana. Sugar Technology, 10, 248 – 253.

    Google Scholar 

  105. Bian, Y. M., (1981) Studies on Stevia rebaudiana a new sweet-tasting plant: refining stevioside and determination of its concentration. [Chinese]. Plant Physiology Communications, 3: p. 15 – 17.

    Google Scholar 

  106. Buana, L., (1989) Determination of the required growth variables in an agronomic experiment with Stevia. [Indonesian]. Menara Perkebunan, 57 (2): p. 29 – 31.

    Google Scholar 

  107. Shu, S.Z. and W. Z. Wang, (1988) Variation in quantitative characters in Stevia. Acta Agronomica Sinica,14(2): p. 167 – 173.

    Google Scholar 

  108. Fuh, W. S. and B. H. Chiang, (1990) Purification of steviosides by membrane and ion exchange processes. Journal of food science; 55(5): p. 1451 – 1457.

    Google Scholar 

  109. Shyu, Y. T. et al., (1994) Effects of harvesting dates on the characteristics, yield, and sweet. Journal of Agricultural Research of China, 43(1): p. 29 – 39.

    Google Scholar 

  110. Wood, D. J., et al., (1996). The effect of stevia as a feed sweetener on weight gain and feed consumption of broiler chickens. Canadian Journal of Animal Science, 76(2): p. 267 – 269.

    Google Scholar 

  111. Oddone, B., (1999). How to Grow Stevia,. Of maringa Brazil. Guarani Botanicals, Inc.; Pawcatuck, Conecticut. P. 1 – 30.

    Google Scholar 

  112. Tateo, F. et al. (1998) Stevioside content and morphological variability in a population of Stevia rebaudiana. Bertoni from, Paraguay. Italian J. Food Sci. 10 (3), 261 – 267.

    Google Scholar 

  113. Huang, Y. S., et al., (1995). Studies on the variation of steviosides content and selection of type R – A in Stevia rebaudiana. Journal of Plant Resources & Environment, 4(3): p. 177 – 186.

    Google Scholar 

  114. Murayama, S., Kayano, R., Miyazato, K., & Nose, A. (1980). Studies on the cultivation of Stevia rebaudiana.II. Effects of fertilizer rates, planting density and seedling clones on growth and yield. Science Bulletin of the College of Agriculture, University of the Ryukyus,Okinawa 27, 1–8.

    Google Scholar 

  115. Donalisio, M. G., Duarte, F. R., & Souza, C. J. (1982). Estevia (Stevia rebaudiana). Agronoˆ-mico, Campinas (Brazil), 34, 65–68.

    Google Scholar 

  116. Singh, V., and Kaul, V. K. (2005). Stevia rebaudiana for income generation. Vigyan Pragati 10–15.

    Google Scholar 

  117. Utumi, M. M., Monnerat, P. H., Pereira, P. R. G., & Godinho, V. de. P. C. (1999). Macronutrient deficiencies in Stevia rebaudiana: Visual symptoms and effects on growth, chemical composition and stevioside production. Pesquisa Agropecura Brasiliera 34. 1039 – 1043.

    Google Scholar 

  118. Katayama, O., Sumida, T., Hayashi, H., & Mitsuhashi, H. (1976). “The Practical Application of Stevia and R and D data.” p. 747. ISU Co., Japan.

    Google Scholar 

  119. Kawatani, T., Kaneyi, Y., & Tanabe, T. (1977). On the cultivation of Kaa-hee (Stevia rebaudiana Bert.). Japanese J. Tropical Agri. 20, 137 – 142.

    Google Scholar 

  120. Kawatani, T., Kaneyi, Y., Tanabe, T., & Takahashi, T. (1980). On the cultivation of Kaa-He-e (Stevia rebaudiana Bert.). VI. Response of to potassium fertilization rates and to the three major elements of fertilizer. Nettai Nogyo 24, 105 – 112.

    Google Scholar 

  121. Son, R, O. F., De, Sena, J. O. A., & Sheep. J. W. P. (1997). Uptake and accumulation of nutrients in stevia (Stevia rebaudiana). II. Macronutrients. Scientia Agricola 54, 1.

    Google Scholar 

  122. Chalapathi, M. V., Thimmegowda, S., Rao, G. G. E., Devakumar, N. & Chandraprakash., J. (1999b). Influence of fertilizer levels on growth, yield and nutrient uptake of ratoon crop of stevia (Stevia rebaudiana). J. Med. Aromatic Plant Sci. 21, 947 – 949.

    Google Scholar 

  123. Zhao, Y. G. (1985). The effect of microelements on Stevia rebaudiana. Zhejiang Agricultura Science Zhejiang Nongye Kexue 1, 44–45.

    Google Scholar 

  124. Sheu, B.W., Tamai, F., & Motoda, Y. (1987). Effects of boron on the growth, yield and contents of stevioside and rebaudiosideAof Stevia rebaudiana. J. Agricultural Sci. (Japan), 31, 265–272.

    Google Scholar 

  125. Goenadi, D. H. (1983). Water tension and fertilization of Stevia rebaudiana on oxic tropudalf soil. Menara Perkebunan 51, 85–90.

    Google Scholar 

  126. Hoyle, F. C. (1992). A Review of Four Potential New Crops for Australian Agriculture, p. 34.Department of Agriculture, Perth.

    Google Scholar 

  127. Bondarev, N. I., Sukhanova, M. A., Reshetnyak, O. V., & Nosov, A. M. (2003b). Steviol glycoside content in diVerent organs of Stevia rebaudiana and its dynamics during ontogeny.Biologia Plantarum 47, 261–264.

    Google Scholar 

  128. Carneiro, J. W. P. (1990). Stevia rebaudiana (Bert.) Bertoni. Production of seed. (M.Sc. Thesis), Stat e University of Maringa, Brazil.

    Google Scholar 

  129. Brandle, J. E., Starratt, A. N., & Gijzen, M. (1998). Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78, 527–536.

    Google Scholar 

  130. Thomas, S. C. L. (2000). “Medicinal Plants-Culture, Utilization and Phytopharmacology,” p. 517, Technomic Publishing Co., Inc., Lancaster, Basel.

    Google Scholar 

  131. Change, K. F., Howard, R. J., & Gaudiel, R. G. (1997). First report on Stevia as a host for Sclerotinia sclerotiorun. Plant Dis. 81, 311.

    Google Scholar 

  132. Metivier, J., and Viana, A. M. (1979a). The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars and stevioside in leaves of Stevia rebaudiana. J. Experimental Bot. 30, 1211 – 1222.

    Google Scholar 

  133. Bridel, M., and Lavielle, R. (1931a). C. R. hebd. Seanc. Acad. Sci. Paris 192, 1123 – 1125.

    Google Scholar 

  134. Bridel, M., and Lavielle, R. (1931b). Le principe a saveur sucree du Kaa-he-e (Stevia rebaudiana). Bull. Soc. Chin. Biol. 13, 636 – 655.

    Google Scholar 

  135. Bridel, M., and Lavielle, R. (1931c). Le principe a saveur sucree du Kaa-he-e (Stevia rebaudiana). J. Pharm. Chem. 14, 99 – 113, 154 – 163.

    Google Scholar 

  136. Jordan Molero, F. (1984). La propagacion de ka’a heé. Stevia rebaudiana Bertoni. Primer Simposio Nacional de la Stevia (kaa hee) Julio 1983, p. 29. Asuncion, Paraguay.

    Google Scholar 

  137. Brandle, J. E., and Rosa, N. (1992). Heritability for yield, leaf:stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 72, 1263–1266.

    Google Scholar 

  138. Taiariol, D. R. (2004) Characterization of S. rebaudiana Bert. http://www/monografias.com/trabiojos13/stevia/stevia.html.

    Google Scholar 

  139. Kornienko, A. V., et al., (1995) - Stevia cultivation. [Russian]. Sakharnaya Svekla, 1995 (10): p. 22 – 24.

    Google Scholar 

  140. Dzyuba, O. O. (1998). Stevia rebaudiana (Bertoni) Hemsley: A new source of natural sugar substitute for Russia. Rastitel’nye Resursy 34, 86–95.

    Google Scholar 

  141. Shu, S., (1989) Stevia rebaudiana variety trials. [Chinese]. Zuowu Pinzhong Ziyuan, (1): p. 17 – 18.

    Google Scholar 

  142. Suhendi, D.,(1989) Mass selection of Stevia rebaudiana Bertoni M. Menara Perkebunan. 56(4): p. 93 – 95.

    Google Scholar 

  143. Colombus, M., The Cultivation of Steiva, “Nature”s Sweetener”,. (1997), QMAFRA: Ontario Canada. p. 4.

    Google Scholar 

  144. Lee, J. I., K. H. Kang, & E. U. Lee, (1979). Studies on the new sweetening source plant stevia (Stevia rebaudiana) in Korea. I. Effects of dates of transplanting, taking cuttings and sowing on the growth characteristics and dry leaf hyields, [Korean]. Research Reports of the Office of Rural Development, Crop, 21: p. 21.

    Google Scholar 

  145. Careiro, J. W. P. and T. A. Guedes, (1992). Influence of the contact of stevia seeds with the substrate, evaluated by menas of the Wiebull function. Revista Brasileira de Sementes, 14(1): p. 65 – 68.

    Google Scholar 

  146. Kawatani, T., Y. Kaneki, & T. Tanabe (1977). The cultivation of kaa he-e (Stevia rebaudiana). II Seed germination with special reference to the optimum temperature and light sensitivity. Japanese Journal of Tropical Agriculture, 20(3): p. 137 – 142.

    Google Scholar 

  147. Carnerio, J. W. P., (1996) Influence of seed number on evaluation of germination performance in Stevia rebaudiana. Revista Brasilira de Sementes, 1996, 18(1): p. 1 – 5.

    Google Scholar 

  148. Dwivedi, R. S. and Randhawa N. S. (1974). Rapid bio-chemical tissue test for hidden hunger of zinc in plants. Plant and soil 40, 445 – 451.

    Google Scholar 

  149. Shazia Faridi and Satyanarayanan, (2015). Applicability of carbonic anhgdroses in mitigating global warming and development of useful products from CO2. Climate change and environmental sustainability 3(2), 77 – 92.

    Google Scholar 

  150. Dwivedi, R. S. (2017). Combating global warming through carbon sequestration using carbonic anhydrase enzyme and photothermal techniques Int. J. Sci. Techno. and Society: 3(2), 68 – 74.

    Google Scholar 

  151. Savita, S., Sheela, K., Sunanda, S., Shankar, A., & Ramakrishna. P. (2004). Stevia rebaudiana – A functional component for food industry. Journal of Human Ecology, 15, 261 – 264.

    Google Scholar 

  152. Goyal, S., Samsher & Goyal, R. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: A review. International Journal of Food Sciences and Nutrition, 61, 1 – 10.

    Google Scholar 

  153. Tadhani, M., & Subhash, R. (2006a). Preliminary studie on Stevia recaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. Journal of Medical Sciences, 6, 321 – 326.

    Google Scholar 

  154. Mishra, P., Singh, R., Kumar. U., & Prakash, V. (2010). Stevia rebaudiana – A magical sweetener Global Journal of Biotechnology, and Biochemistry 5, 62 – 74.

    Google Scholar 

  155. Kim, I., Yang, M., Lee, O. & Kangs (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana, water extract. LWT – Food Sci. and Technol. 44, 1328 – 1332.

    Google Scholar 

  156. Hsieh, M. H., Chan, P., Sue, Y. M., Liu, J. C., Liang T. H. & Huang, T. Y. (2003), Chin. Ther. 25, 2797 – 2808.

    Google Scholar 

  157. Liu, J. C., Kao, P. F., Chan, P., Hsu, Y. H., Hou, C.C. & Lien, G. S. (2003). Pharmacol. 67, 14 – 20.

    Google Scholar 

  158. Levy, J. H. (2005), Tex. Heart Inst. J. 32, 467 – 471.

    Google Scholar 

  159. Doss, A., A. and, Dhanabalan, R. (2009). Antioxidant activity of commonly used vegetables. Indian Jouranl of Nutrition and Dietetics, 46, 257 – 259.

    Google Scholar 

  160. Jayaraman, S., Manoharan, M., & Illanchezian, S. (2008). In – vitro antimicrobial and antitumor activaities of Stevia rebaudiana (Asteraceae) leaf extracts. Tropical Journal of Pharmaceutical Research, 7, 1143 – 1149.

    Google Scholar 

  161. Patil, V., Ashwini, K., Reddy, P., Purushotham, M., Prasad, T., & Udaykumar, M. (1996). In vitro multiplication of steiva rebaudiana. Current Science, 70, 960.

    Google Scholar 

  162. Sivaram, L. & Mukundam, U. (2003). In vitro culture studes on stevia rebaudiana. In Vitro Cellular and Developmental Biology – Plant. 39, 520 – 523.

    Google Scholar 

  163. Debnath, M. (2008). Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. Journal of Medicinal Plants Research, 2, 45 51.

    Google Scholar 

  164. Buyi Kokuroglu, M., Gulcin, I; Oktay, M. & Kufrevioglu, O. (2001). In vivo antioxidant properties of dentrolene sodium. Pharamactogial Res. 44, 491 – 494.

    Google Scholar 

  165. Vant. T., Rajani, M., Sarkar, S., & Shishoo, C., (1997). Antioxidant properties of the ayurvedic formation triphala and its consultants. International journal of pharmacognosy, 35, 313 – 317.

    Google Scholar 

  166. Phansawan, B., & Poungbangpho, S., (2007). Antioxidant capacities of Pueraria mirifica, Stevia rebaudianan Bertoni, Curcuma longa Linn., Andrographis paniculata (Burnm. F.) Nees and Cassia alata Linn for the development of dietary supplement. Kasetsart Journal: Natural Science, 41, 548 – 554.

    Google Scholar 

  167. Robertto, LM, Antonio, V. G., Liliana, Z. B. & Kong, A. H. (2012). Stevia rebaudiana Bert., source of high potency natural sweeteners: A comprehensive review on biochemical nutritional and functional aspects. Food chemistry 132, 1121 – 1132.

    Google Scholar 

  168. Shukla, S., Mehta, A., Mehta, P. & Bajpai, V., (2011). Antioxidant ability and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Experimental and Taxicology: Pathology, doi: https://doi.org/10.1016/j.etp.2011.02.002.

  169. Tadhani, M., Patel , V., & Subhash, R., (2007). In vitro antioxidant activities of Stevia rebaudiana leaves and callus. Journal of Food Composition and Analysis, 20, 323 – 329.

    Google Scholar 

  170. Ahmad, N., Fazal, H., Abbasi, B., & Farooq, S. (2010). Efficient free radical scavenging activity of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous leaves though DPPH (2, 2-diphenyl – 1- picrylhydrazyl). International journal of Phytomedicine, 2, 231 – 239.

    Google Scholar 

  171. Ghanta, S., Banerjee, A., Poddar, A., & Chattopadhyay, S., (2007). Oxidative DNA damage preventive activity and antioxidant potential of stevia rebaudiana (Bertoni) Bertoni, a natural Sweetener. Journal of Agricultural Food Chemistry. 55, 10962 – 10967.

    Google Scholar 

  172. Muanda, F., Soulimanl, R., Diop, B., & Dicko, A., (2010). Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT – Food Science and Technology. Doi: https://doi.org/10.1016/j.lwt.2010.12.002.

  173. Kim, I., Yang, M., Lee, O., and Kang. S. (2011).The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT – Food Science and Technology, 44, 1328 – 1332.

    Google Scholar 

  174. Yasukawa, K., Kitanaka, S. and Seo, S. (2002), Biol. Pharm,. Bull., 25, 1488 – 1490.

    Google Scholar 

  175. Mizushina, Y., Akihisa, T., UniyaM., Hamasakiy, Y., Murakami – Nakai, C., Kuriyama, I., Takeuchi, T., Fumio Sugawara, F., and HYoshida, H. (2005), life sciences. 77, 2127 – 2140.

    Google Scholar 

  176. Sharma, D., Puri, M., Tiwari, A. K., Singh, N., and Jaggi, A. S. (2010), Indian J. Pharmacol., 42, 164 – 167.

    Google Scholar 

  177. Xu, D., Du, W., Zhao, L., Davey, A. K., and Wang, J. (2008) Plant Med., 74, 816 821.

    Google Scholar 

  178. Binder, H. J. (1990), Am. J. Med., 88 2S – 4S.

    Google Scholar 

  179. Takahashi, K., Matsuda, M., Ohashi, K., Taniguchi, K., Nakagomi, O. & Abe, Y. (2001), Antiviral Res. 49, 15 – 24.

    Google Scholar 

  180. DuBois, G. E., Walters, D. E., Schiffman, S. S., Warwick, Z. S., Booth, B. J., Pecore, S. D., Gibes, K., Carr, B. T., & Brands, L. M. (1991), American Chemical Society, Walters, D. E., Orthoefer, F. T., and Dubois, G. E. (Eds.), Washington, DC 261 – 276.

    Google Scholar 

  181. Crammer, B., & Ikan, R. (1987). Progress in the chemistry and progress of the rebaudiosides. In T. Grenby (Ed.), Developments in Sweeteners (pp. 45 – 64). London, UK: Elsvier Applied Science.

    Google Scholar 

  182. Crammer, B. and R. Ikan, (1986). Sweet glycosides from the stevia plant. Chemistry in Britain. 1986. 22: 10, 1986. 915 – 916 (Referativnyi Zhurnal).

    Google Scholar 

  183. Serio, L. (2010) La Stevia rebaudiana, une alternative au sucre. Phytotheapie 8, 26 – 32.

    Google Scholar 

  184. Chang SS, Cook JM (1984). Stability studies of Stevioside and rebaudioside A in carbonated beverages. J. Agric. Food Chem. 31: 409 – 412.

    Google Scholar 

  185. EFSA, European Food Safety Authority (2010). Scintific opinion on the safety Steviol glycosides for the porposed uses as food additive. EFSA panel for Food Additive and Naturient Sourcess added to food (ANS). EFSA Journal 8(4), 1537, pp 1 – 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Steviosides (Diterpenoids). In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_7

Download citation

Publish with us

Policies and ethics