Skip to main content

Saccharide Sweet (SS) Principles, Classification and Structural and Functional Details of SS Sweeteners and Plants

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 403 Accesses

Abstract

Saccharides, the simplest forms of carbohydrates, consist of single sugar units with five or six carbon atoms in a ring form. They are commonly called “sugars”or “sweeteners” because they taste sweet. Monosaccharides consist of one saccharide unit; disaccharides, two units; trisaccharides, three units; and polysaccharides, many units. Oligosaccharides are saccharides with more than three but less than eight units. Lot of literature are available on carbohydrates and saccharide sweet (SS) principles [1, 2], hence pertinent and salient features are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, D.L. and Cox, M.M. (2005) Principles of Biochemistry. W.H. Free man & Co. 41 Madison Avenue, N.York.

    Google Scholar 

  2. Shallenberger, R.S and Birch, G.G (1975) Sugar Chemistry. The AVI pucblishing inc, Wets Port, continent, U.S.A p22.

    Google Scholar 

  3. Lineback, D.R. and Inglett G.E. (1988) Food carbohydrates AVI, West port, CT.

    Google Scholar 

  4. God shall, M.A. (2007). The expanding world of Nutritive and non Nutritive sweeteners. Sugar J. 69, 12-20.

    Google Scholar 

  5. Chattopadhyay, S., Raychaudhari, U. and Chakraworty, R. (2014). Artificial Sweeteners-a review. J. Food Sa: Tech nol. 51(4), 611-621.

    Google Scholar 

  6. William A. Miller Element of chemistry. (2017) Theoritical practical. Pt III Organic Chemistry London, England, John, Parker & Sons (857). P. 52 & 54-Archived. 2017-4-14.

    Google Scholar 

  7. Marcellin Berthelot. Chimic Organique fondee sur la Synthese Paris, France : Mallet-Bachelle (860) PP 258-55. Archived 294.6.27 at wayback machine.

    Google Scholar 

  8. Deerr, N. (1949/50). The history of sugar, vol., 1 and 2 Chapman and Hall, London.

    Google Scholar 

  9. Hunsigi, G. (1993). Production of sugarcane, Springer verlag, Berlin.

    Google Scholar 

  10. Nabors, L.O. (2002) Sweet Choices:Sugar replacement for food and beverage. Food Technology, 56, 28-32.

    Google Scholar 

  11. Salunkhe, D.K. and Desai, B.B. (2000) Post harvest Biotechnology of Sugar crops. CRC Press Inc. Boca Raton, Florida. 58-211.

    Google Scholar 

  12. Glucose-Wikipedia (2020.07.02) (w https://en.m.wikipedia.org.7wiki).

    Google Scholar 

  13. Dwivedi, R.S. (2005) Screening of sugarcane varieties and super sweet plants for sodicity tolerance. World Bank Project, Final Report IISR (ICAR), Lucknow, India P158.

    Google Scholar 

  14. Anoymous (1956). Indian sugar manual. Bhartiya Tad Gur, Shilpa Bhawan Khanu, Maharashtra, India PP 258.

    Google Scholar 

  15. Roy, S.C. (1951). Monograph on the Gur Industry in India, Indian Institute of Sugar Technology, Kanpur, India pp. 300+LXXIV.

    Google Scholar 

  16. IISR (2008) swasthya wardhak Gur- Indian Institute of Sugarcane Research, Lucknow, India- (www.iisr.nic.in) ISO 9001:2008.

  17. Bhandari, Chandra Raj (1970) An encyclopedia of Indian Botanys and Herbs. Chaikhamba Sanskrit Series office, Varanasi-1 (India). Pp 3-10.

    Google Scholar 

  18. Daniel, B. (1996). Religion study programme. Rockefeller Hall, Room 86 ; djb 38@cornell 607-225-7788.

    Google Scholar 

  19. Genit Jan Mevlenbeld (1999) A history of Indian Medical literature Vol. IA, Groningen : Forsten, P114.

    Google Scholar 

  20. Boslaugh, Sarah (2007). Encyclopedia of Epidemiology. ISAGE Publications. ISBN 978-1412928168.

    Google Scholar 

  21. Singh, A, Lal, U.R. and Dhawan R.K. et al (2015 May 5) Phytochemical profile of sugarcane and its potential health aspect : Pharmacognosy, Reviews, 9,17,45-54 dio: https://doi.org/10.4103/0973-0973-7847, 15640.

  22. Gaur, G.P. (1974). Doctor Ganna, Tej Kumar Book Depot. (Pvt.) Ltd., Lucknow, p, 64.

    Google Scholar 

  23. Lakshman, H. (1988). Use of sugarcane, sugar and jiggery in the treatment of human diseases in Ayurveda.

    Google Scholar 

  24. Sharma, M.P. (1991). Less-known medicinal uses of plants from Mewat (District Soni, L. (1991). Arogya Vardhini, p. 86.

    Google Scholar 

  25. Jain, A. (1992). Kuch Gharelu Nuskhe, Rashtriya Sahara (Hindi Daily), July 8, p. 14.

    Google Scholar 

  26. Bharadwaj, V. (1993). Baten kam ki. Rashtriya Sahara (Hindi Daily) : Feb, 17.

    Google Scholar 

  27. Anonymous (1991). Kumhra. Ayrogya Vardhini, p.37.

    Google Scholar 

  28. El khadem, H.S. 1988. Carbohydrate Chemistry:Moul saccharides and their oligomers. Academic Press, San Diego, CA.

    Google Scholar 

  29. Maltose-Wikipedia (2020.07.02) (w https://en.m.wikipedia.org.7wiki).

    Google Scholar 

  30. The granty (2012) ed. Advances in sweeteners Google search. https://www.google.com/search.

  31. Nelson. A.M. (2000) Overview. Sweeteners alternatives. Am. Assoc. of Cereal chemist 3340 Pilol Knob Road, Minnasota, U.S.A.

    Google Scholar 

  32. Gruniwald, R.W., Weber, I.I. and Kinne, R.K. (Nov 1995). Renal inner medulary sorbitol metabolism. Nov 1995. doi: https://doi.org/10.1152/ajprenal.1995.269.5.F696.

  33. Shen, Bo, Hohmann, Jenson, R.G. and Bohnerf H.J. (1999) Role of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by sorbitol and mannitol in yeast. Plant Physiol. 12(1), 45-52.

    Google Scholar 

  34. Sorbitol for diabetic (2020.08.02) Sorbitol Caloric Control council https://caloric control.org7 sorbitol.

    Google Scholar 

  35. Sorbitol as diabetic and laxative (2020.08.02) https://pub chem. Ncpi.min.nin.gov.

    Google Scholar 

  36. Tenny S, patel r, Thorel, W.M. (2019 Dec 16 updated). In Statipearl Internal. Treasure Island (FL). State pearl Publishing; 2020, Jan.

    Google Scholar 

  37. Mesghali, E, Filter, S, Boljri K and Maussovi, K. (2019) Periheral line ministration of 30% hypertonic saline and mannitol in the emergency Department. J. Energy Med. 2019, April: 56 (4): 431-436. (Pub Med).

    Google Scholar 

  38. Alnemari, AM, Krafcik, BM, Mansour, T.R and Goudin D.A. (2017) comparison of pharmacologic therapeutic agents used for reduction of intracranial pressure after traumatic brain injury. World Neurosurg. 2017 Oct:106,509-528 (Pub. Med.)

    Google Scholar 

  39. Pasarikovski, C.R., Alotaibi, NM, Mufti, Al.F. and Macdonold, R.L. (2017) Hypertonic saline for increased intracranial pressure after Aneurysmal subarachnoid Hemorrhage. A systematic review. World Neurosurg. 2017 Sept : 105:1-6 (Pub Med).

    Google Scholar 

  40. Wakai, A, MC Cabe A, Robets I, Schierhout G. (2019) Mannitol for acute traumatic brain injury. Coachrane Data base system Rev. 2013 Aug 05; (8): CDUB 1049 (Pub Med).

    Google Scholar 

  41. Maltitol Diabetic (2019) https://www.diabetic.co.uk.maltitil

  42. Maltitol Cargill pharmaceutical. Maltitol cough syrup.

    Google Scholar 

  43. Easy journal, 7 Aug 2020. Eight reason that maltitol is bad for you. Networks Asia.net.

    Google Scholar 

  44. Xylitol.wikipedia (2020.07.20) https://en.m.wikipedia.org

  45. Van Soest, P.J., Robertson, J.B., Lewish, B.A. (1991) Methods for dietary fibres, neutral detergents fibres and non-starch polysaccharides in relation to animal nutrition. J. of Dairy Sci. 74: 3583-3597.

    Google Scholar 

  46. Barbosa, M.F.S.; de Medeiros, M.B., de Manchilha, I.M.;Schneider, H.; Lee, H. (1988). ‘Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guillermondii’ J. Indust. Microbiol. 3: 241-251. doi: https://doi.org/10.1007/bf01569582.

  47. Gare, Fran (February 1, 2003). The Sweet Miracle of Xylitol. Basis Health Publications, Inc. ISBN 1-59120- 038-5.

    Google Scholar 

  48. Rao, RS; Jyothi ChP, Prakasham RS; Sarma, PN; Rao, LV (October 2006). ‘Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis’. Bioresource Technology, 97 (15): 1974-1978.

    Google Scholar 

  49. Washiittl J. Riederer Pand bancher E (1973) A qualitative and quantitative study of sugar alcohols in several foods. J. Food Sci. 38, 1262

    Google Scholar 

  50. Converti, Atillio; Parego, Patrizia; Dominguez, Jose Manuel (1999). ‘Xylitol Production from Hardwood Hemicellulose Hydrosylates’ (PDF). Applied Biochemistry and Biotechnology. 82: 141-151

    Google Scholar 

  51. Walters, D. Eric. ‘Xylitol’ All About Sweeteners. Retrieved March 14, 2012.

    Google Scholar 

  52. Vasilescu, Razvan; Ionescu, A.M.; Mihai, A.; Carniciu, S.; Ionescu-Tirgoviste, C. (2011). ‘Sweeteners and metabolic diseases: Xylitol as a new player’ Proc. Rom. Acad. B. 2: 125-128.

    Google Scholar 

  53. Drucker, D.B.; Verran, J. (1979). ‘Comparative effects of the substance-sweeteners glucose, sorbitol, sucrose, xylitol and trichlorosucrose on lowering of pH by two oral Streptococcus mutans strains in vitro’ Archives of Oral Biology. 24 (12): 965-970 doi: https://doi.org/10.1016/0003-9969(79)90224-3. PMID 44996.

  54. Maguire, A; Rugg-Gunn, AJ (2003). ‘Xylitol and caries prevention-is it a magic bullet?’. British Dental Journal. 194 (8): 429-436. doi: https://doi.org/10.1038/sj.bdj.4810022. PMID 12778091. Retrieved March 14, 2012.

  55. Reusens, B. (2004). Remacle, Claude; Reusens, Brigitte, eds. functional foods, ageing and degenerative disease. Cambridge, England: Woodhead Publishing p. 202. ISBN 978-1-85573-725-9. Retrieved March 14, 2012.

    Google Scholar 

  56. ‘Policy on the use of Xylitol in Caries Prevention’ (PDF). Reference Manual. American Academy of Pediatric Dentistry. 33 (6): 42-44. 2010. Retrieved March, 14, 2012.

    Google Scholar 

  57. Ritter, AV, Bader, JD, Leo, MC, et al (2013 June) Tooth surface-specific effect of xylitol : Randamised Trail Results : J. Dental Research. 92 (6), 512-517.

    Google Scholar 

  58. ‘CITE : 21 CFR 172.395’. Code of federal Regulations Title 21. United States Food and Drug Administration 2012-04-01.

    Google Scholar 

  59. Cochrane Library (26 March, 2015). ‘Can xylitol used in products like sweets, candy, chewing gum and toothpaste help prevent tooth decay in children and adults?’. Systemic Review Inter version Published 26 March, 2015. Cochranelibrary.com

    Google Scholar 

  60. Marti, N; Funes, L.L.; Saura, D.; Micol, V. (July 2008). ‘An update on alternative sweeteners’ International sugar journal. 110 (1315): 425-429. ISSN 0020-8841.

    Google Scholar 

  61. Jones, A (Summer 2001). ‘Intranasal Xylitol, Recurrent Otitis Media, and Asthma: Report of Three Cases.’ Clinical Practice of Alternative Medicine (2): 112-117.

    Google Scholar 

  62. ’Xylitol’. drugs.com. Retrieved 12 July, 2015.

    Google Scholar 

  63. Sato H, et al. (2011) ‘The effects of oral xylitol administration on bone density in rat femur’. Odontology. 99: 28-33. doi: https://doi.org/10.1007/S10266-010-0143-2. PMID 21271323.

  64. Makinen, KK (1976). ‘Long-term tolerance of healthy human subjects to high amounts of xylitol and fructose: general and biochemical findings’. International Zeitschrift fur Vitamin and Ernahrungs forschung Beiheft. 15: 92-104. doi: https://doi.org/10.1002/14651858. CD010743. PMID 783060.

  65. Wang, Yeu-Ming; van Eys, Jan (1981). ‘Nutritional significance of fructose and sugar alcohols’. Annual Review of Nutrition. 1: 437-75. doi: https://doi.org/10.1146/annurev.nu.01.070181.002253. PMID 6821187.

  66. ’Sugar Alcohols’ (2015). Canadian Diabetes Association. May 2005. Archived from the original (PDF) on April 25, 2012. Retrieved March 14, 2012.

    Google Scholar 

  67. Dunayer, Erik K. (December 2006). ‘New findings on the effects of xylitol ingestion in dogs’ (PDF). Veterinary Medicine. 101 (12): 791-797. Archived from the original (PDF) on June 17, 2013. Retrieved March 14, 2012.

    Google Scholar 

  68. ’Xylitol could kill sugarbirds-and pets’. Inde pendent Online. REtrieved 12 July 2015. (http://en.wikipedia.org/w/index.php?title=xylitol&oldid=778750732)

    Google Scholar 

  69. Makinen, Kauko (Oct 20, 2016). ‘Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylotil: Scientific Review and Instructions for Dentists and Other Health-Care Professionals’ Int J Dent. doi: https://doi.org/10.1155/2016/5967907.

  70. Xylitol (2009) Polyol information source. http://www.polyyol.org/jap/fap/xylitol low. Accessed 5 February, 2009.

    Google Scholar 

  71. Fruton, J.S. (1972) Molecules of Life Wiley-Inter Science, (on live library) New York, London.

    Google Scholar 

  72. Clark, M.G. Blokham, DO, Holland PC and lavdy H.a. (1988) Estimation of fructose diphosphtase phosphogructokinaze substrate cycle in flight muscles of Bambus offinis. Biochem J. 134,589-597.

    Google Scholar 

  73. Lee, T.D. (2000 Jan, 1) Sweeteners, Kirk-Other Encyclope dia of chemical technology doi: https://doi.org/10.1002/047123896/19230505/20505.ao/ Pub 2. ISBN 978-0471.

  74. Hanover L.M. while J.S. (1993 November 1) Manufacturing, composition and application of fructose. Am. J. Clinical Nutrition 58 (s), 7248-7325.

    Google Scholar 

  75. Kensch, P. (2010) yeast and sufar-The Chemistry must be right. ARchieved from the organic on December, 20, 2010.

    Google Scholar 

  76. Dills, W.L. (1993) Protein fructoselation : Fructose and Maillard reaction. J. of clinical nutrition, 58 (5 suppl.) 779-787.

    Google Scholar 

  77. Huber, C.W., Ibore S and Corma, A. (Sept. 2006) Synthesis of transportation fuel from biomass. Chemistry, catarly and Engineering. Chem. Rev. 106 (9) 4044-98

    Google Scholar 

  78. Zheng, J. et al (2017). Lower dose of fructose extended life span of J. Diet supple 14 (3) : 264-277.

    Google Scholar 

  79. Of health claim related to fructose and reduction of postprandial glycaemic response (ID558) pursuant to article 31 [1] of regulation (EC) No 1924/2006 EFSA Journal 9,(6),2223.

    Google Scholar 

  80. Carbohydrates and health /PDF/US Scientific Advisor, committee on nutrition, Public health England, T50, William, Lea, Norwich, UK, (2015) Archieved PDF from original an 2016. Retrieved from Apri, 2016.

    Google Scholar 

  81. Boeckner, LS; Schnepf, MI; Tungland, BC (2001). ‘Inulin : a review of nutritional and health implications’. Advances in Food and Nutrition Research. 43: 1-63. Doi: https://doi.org/10.1016/s1043

  82. Barclay, Thomas et al (2010) Inulin a Versatile poly saccharide with multiple Pharmaceutical and food uses. Diss. Int. Pharmaceutical Cstipients council 2010.

    Google Scholar 

  83. Niness, KR (July 1999). ‘Inulin and oligofructose: what are they?’. The Journal of Nutrition. 129 (7 suppl.): 1402S-6S. PMID 10395607.

    Google Scholar 

  84. Kalyani Nair, K.; Kharb, Suman; Thompkinson, D.K. (18 March, 2010). ‘Inulin Dietary Fiber with Functional and Health Attributes-A Review’. Food Reviews International. 26 (2): 189-203. Doi: https://doi.org/10.1080/87559121003590664.

  85. Irvine, James Colquhoun; Soutar, Charles William (1920). ‘CLXV. The constitution of polysaccharides. Part II. The conversion of cellulose into glucose’. Journal of the Chemical Society. Transactions. 117: 1489. Doi: https://doi.org/10.1039/CT9201701489.

  86. James Colquhoun; Stevenson, John Whiteford (July, 1929). ‘The molecular structure of inulin. Isolation of a new anhydrofrucose’. Journal of the American Chemicals Society. 51 (7): 2197-2203. Doi: https://doi.org/10.1021/ja01382a035.

  87. Richards, A.N.; Westfall, B.B.; Bott, P.a. (1 October 1934). ‘Renal Excretion of Inulin, Creatinine and Xylose in Normal Dogs’. Experimental Biology and Medicine. 32 (1): 73-75. Doi: https://doi.org/10.3181/00379727-32-7564P.

  88. Shannon, JA; Smith, HW (July 1935). ‘The excretion of inulin, xylose and urea by normal and phlorinzinized man’. The Journal of Clinical Investigation. 14 (4): 393-401. Doi: https://doi.org/10.1172/JCI100690. PMID 16694313.

  89. Arnarson, (written by spritzler. F.) A. (2020 April 27) Medieally reviewed : Inulin (a prebiotic fiber) : Health benefits & risks

    Google Scholar 

  90. Roberfroid, mB. ‘Caloric value of inulin and oligofructose’. J Nutr. 129: 1436S-7S. PMID 10395615.

    Google Scholar 

  91. Gargari, B.P. Dehaghan, P, Akbar, A, Jafar Abadi, MA (2013) effect of high performance inulin supplementation on glycemic control and antioxidant status in type 2 diabetes. Diabetes Metab. J. 37 (20, 140-148.

    Google Scholar 

  92. Zhang, Q, et al Pear J. (2018) Inulin type fructan improves diabetic phenotype and gut microbias profile in rats. pub med 29507837 Pub med. Ncbi.nim.nih.gov.

    Google Scholar 

  93. Kazuyoshi Ohta; Shigeyuki Hamada; Toyohiko Nakamura (1992). ‘Production of High Concentrations of Ethanol from Inulin by Simultaneous Saccharificaion and Fermentation Using Aspergillus nier and Saccharomyces cerevisie’. Applied and Environmental Microbiology. 59 (3): 729-733. PMC 202182. PMID 8481000.

    Google Scholar 

  94. Abrams S, Griffin I, Hawthorne K, Liang L, Gunn S, Darlington G, Ellis K (2005). ‘A combination of prebiotic short-and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescent’ Am J Clin Nutr. 82 (2): 471-6. PMID 16087995.

    Google Scholar 

  95. Griffin, I.J.; P.M. Hicks; R.P. Heaney; S.A. Abrams (2003). ‘Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption’. Nutr. Res. 23: 901-909. Doi: https://doi.org/10.1016/s0271-5317(03)00085-x.

  96. Saad, N.; C. Delattre; M. Urdaci; J.M. Schmitter; P. Bessollier (2013). ‘An overview of the last advances in probiotic and prebiotic field’. LWT-Food Sci. Technol. 50: 1-16.

    Google Scholar 

  97. Physiology: 7/7ch04/7ch04p11- Essentials of Human Physiology- ‘Glomerular Filtration Rate’.

    Google Scholar 

  98. Abed, S.M., Ali, A.H. Ali, Anwar, N. et al (2016 August 5) Inulin as prebiotics and its applications in food industry and human health; A Review. Int. J. Agri. Innov. Res. (IJAIR) 5 (1) ISSN (online) 2319-1473.

    Google Scholar 

  99. Leach, JD; Sobolik, KD (2010). ‘High dieary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert.’ Br J Nutr. 103 (11): 1558-61. Doi: https://doi.org/10.1017/S0007114510000966. PMID 20416127.

  100. Coussement P (1999). ‘Inulin and oligofructose:safe intakes and legal status’. J Nutr. 129 (7 Suppl): 1412S-7S. PMID 10395609. Text.

    Google Scholar 

  101. Rulis, Alan, M (2003, May 5) Agency response letter GRAS notice No. GRN 000118, US, FDA.

    Google Scholar 

  102. Keepe, Dennis, M (2015, Dec 9) Agency response letter GRAS notice No. 000576. US Food and Drug Administration.

    Google Scholar 

  103. FDA/CFSAN : (2018 Sept 28) Agency Response Letter : GRAS Notice No. GRN 000076 (http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm 154185.htm)

    Google Scholar 

  104. The discovery of erythritol, which Stenhouse called ‘erythroglucin’, was announced in : Stenhouse, J. (January 1, 1848). ‘Examination of the proximate principles of some of the lichens’ Philosophical Transactions of the Royal Society of London. 138: 63-89; see especially p. 76. Doi: https://doi.org/10.1098/rstl.1848.0004

  105. Shindou, T.; Sasaki, Y.; Miki, H.; Eguchi, T.; Hagiwara, K.; Ichikawa, T. (1988). ‘Determination of erythritol in fermented foods by high performance liquid chromatography’ (pdf). Shokuhin Eiseigaku Zasshi. 29 (6) : 419-22. Doi: https://doi.org/10.3358/shokueishi.29.419.

  106. Munro, I.C.; berndt, W.O.; Borzelleca, J.F.; et al. (December 1998). ‘Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data’. Food and Chemical Toxicology. 36 (12): 1139-74.

    Google Scholar 

  107. European Commission Directive (2008) 100EC changed the energy conversion values of erythritol to zero calories. Current regulations (Reg. (EC) 1169/2011) preserve this conversion factor at 0 cal/g for energy value calculation purposes.

    Google Scholar 

  108. ‘A list of words whose use should be avoided in favor of the accompanying synonyms’ Journal of Anaytical and Applied Chemistry. 6: 160. 1892.

    Google Scholar 

  109. Storey, D.; Lee, A.; Bornet, F.; Brouns, F. (Mar 2007). ‘Gastrointestinal tolerance of erythritol and xylitol ingested a liquid’. European Journal of Clinical Nurition. 61 (3): 349-54. Doi: https://doi.org/10.1038/sj.ejc.n1602532. PMID 16988647.

  110. ‘Zerose erythritol’. Cargill. Pharmaceutical https://www.cargil.com>products.

  111. Petersen, Erik; Rajashekara, Gireesh; Sanakkayala, Neelima; Eskra, Linda; Harms, Jerome; Splitter, Gary (2013). ‘Erythritol triggers expression of virulence traits in Brucella melitensis’. Microbes and Infection. 15 (6-7): 440-449. Doi: https://doi.org/10.1016/j/micinf.2013.02.002. ISSN 1286-4579.

  112. Baudier, K.M., Marenda, K, Patel S.D. et al (2014) Erythrites a nornutritir sugar alcohol sweetener and the main component of Truvia (R) is palatable to ingested insecticide PLOSONE : 9 (6) e98949.

    Google Scholar 

  113. Arrigoni, E.; Brouns, F.; Amado, R. (November 2005). ‘Human gut microbiota does not ferment erythritol’. British Journal of Nutrition. 94 (5): 643-6. Doi: https://doi.org/10.1079/BJN20051546. PMID 16277764.

  114. Vasudevan, D.M. (2013). Textbook of biochemistry for medical students. New Delhi: Jaypee Brothers Medical Publishers (P) LTD. P. 81. ISBN 978-93-5090-530-2.

    Google Scholar 

  115. Kawanabe, J.; Hirasawa, M.; Takeuchi, t.; Oda, T.; Ikeda, T. (1992). ‘Noncariogenicity of erythritol as a substrate’. Caries Research. 26 (50: 358-62. Doi: https://doi.org/10.1159/000261468. PMID 1468100.

  116. Noda, K; Nakayama, K; Oku, T (April 1994). ‘Serum glucose and insulin levels and erythritol balance after oral administration of erythritol in healthy subjects’ European Journal of Clinical Nutrition. 48 (4): 286-292. PMID 8039489.

    Google Scholar 

  117. Hino, H.; Kasai, S.; Hatrori, N.; Kenjo, K. (Mar 2000). ‘A case of allergic urticaria caused by erythritol’. Journal of Dermatology. 27 (3): 163-5. PMID 10774141.

    Google Scholar 

  118. Kaitlin M. Baudier, Simon D. Kaschock-Marenda, Nirali Patel, Katherine L. Diangelus, Sean O’Donell, Daniel R Marenda, Frederic Marion-Poll: Erythritol, a Non-Nutritive Sugar Alcohol Sweetener and the Main Component of Truvia, Is a Palatable Ingested Insecticide. In: PLoS ONE. 9, 2014, S. e98949, doi: https://doi.org/10.1371/journal.pone.0098949 (https://ds.doi.org/10.1371%2Fjournal.pone. 0098949).

  119. Clara Piccirillo, (January 28, 2014). ‘How is Erythritol made? Manufacture of a Low-Calorie Sugar Substitute’. Decoded Science.

    Google Scholar 

  120. WHO (New York agency) (2017). (https//www.newcenturyhc.com) posted on 31 Jan, 2017.

    Google Scholar 

  121. ‘Gestational Diabetes and Low-Calorie sweeteners : (2015) answers to Common Questions’ (PDF). Food Insight. Retrieved 15 May, 2015.

    Google Scholar 

  122. ‘Tate & Lyle loses sucralose patent case’. (2008) ap-foodtechnology.com (2008).

    Google Scholar 

  123. Michael A. Friedman, Lead (1998) Deputy Commissioner for the FDA, Food Additives Permitted for Direct Addition to Food for Human Consumption; Sucralose Federal Register : 21 CFR Part 172, Docket No. 87F-0086, April 3, 1998.

    Google Scholar 

  124. Bert Fraser-Reid, 2012, ‘From Sugar to Splenda: A Personal and Scientific Journey of a Carbohydrate Chemist and Expert Witness,’ Berlin:Springer, pp. 199-210, and passim, see [2], accessed 2 November, 2014.

    Google Scholar 

  125. U.S. Patent 5, 498,709-Production of sucralose-Navia et al (1995-1996) assignee-Tate and Lyle Technology, Ltd.

    Google Scholar 

  126. Food Business News’. www.foodbusinessnews.net. Retrieved 2016-04-06.

    Google Scholar 

  127. Food and Drug Administration (2006). ‘Food labeling: health claims; dietary noncariogenic carbohydrate sweeteners and dental caries’. Federal Register. 71 (60): 15559-15564. PMID 16572525.

    Google Scholar 

  128. Grotz, VL; Henry, RR; McGill, JB; Prince, MJ; Shamoon, H; Trout, JR; Pi-Sunyer, FX (2003). ‘lack of effect sucralose on glucose homeostasis in subjects with type 2 diabetes’. Journal of the American Dietetic Association. 103 (12): 1607-12. Doi: https://doi.org/10.1016/j.jada.2003.09.021. PMID 14647086.

  129. FAP 7A3987, August 16, (1996). Pp 1-357. A 12-week study of the effect of sucralose on glucose homeostasis and HBa1C IN NORMAL HEALTHY VOLUNTEERS, Center for Food Safety and Applied Nutrition, U.S. FDA.

    Google Scholar 

  130. ‘CFR-Code of Federal Regulaions Title 21’. U.S. Food and Drug Administration. 2011-04-01. Retrieved 11 March, 2012.

    Google Scholar 

  131. Ford, HE; peters, V; Martin, NM; Sleeth, ML; Ghatei, MA; Frost, GS; Bloom, SR (April 2011). ‘Effects of oral ingestion of sucralose on gut hormone response and sppetite in healthy normal-weight subjects’. European journal of clinical nutrition. 65 (4): 508-13. Doi: https://doi.org/10.1038/ejcn.2010.291. PMID 21245879.

  132. Labare, Michael P; Alexander, Martin (1993). ‘Biodegradation of sucralose in samples of natural environments’. Environmental Toxicology and Chemistry. 12 (5): 797-804. Doi: https://doi.org/10.1897/1552-8618 (1993) 12/797:BOSACC/2.0.CO;2.

  133. Measurements of Sucralose in the Swedish Screening Program (2007), Part I; Sucralose in surface waters and STP samples.

    Google Scholar 

  134. Dong, Shujun; Liu, Guorui; Hu, Jicheng; Zheng, Minghui (October 15, 2013). ‘Polychlorinated dibenzo-p-dioxins and dibenzofurans formed from sucralose at high temperature’. Scientific Reports. 3. Doi: https://doi.org/10.1038/srep02946. PMC 3796739. PMID 24126490.

  135. Soddard KI, Huggett DB (2014). ‘Early life Stage (ELS) Toxicity of Sucralose to Fathead Minnows, Pimephales promelas’. Bull Environ Contam Toxicol. 93 (4): 383-7. Doi: https://doi.org/10.1007/s00128-014-1348-9. PMID 25120258.

  136. Sasaki, YF; Kawaguchi, S; Kamaya, A; Ohshita, M; Kabasawa, K; Iwama, K; Taniguchi, K; Tsuda, S (2002-08-26). ‘The comet assay with 8 mouse organs: result with 39 currently used food additives’. Mutation Research. 519 (1-2): 103-119 doi: https://doi.org/10.1016/S383-5718(2)00128-6. PMID 12160896.

  137. Weihrauch MR, Diehl V (2004). ‘Artificial sweeteners-do they bear a carcinogenic risk?’. Ann Oncol. 15 (10):1460-5. Doi: https://doi.org/10.1093/annonc/mdh 256. PMID 15367404.

  138. ‘Canadian Diabetes Association (2008) Clinical Practice guidelines for the Prevention and Management of Dia Canada’ (PDF). Canadian Journal of Diabetes. Canadian Diabetes Association. 32 (Supplement 1): S41. September 2008.

    Google Scholar 

  139. Goldsmith LA (2000). ‘Acute and subchronic toxicity of sucralose’. Food Chem Toxicol. 38 Suppl 2: S53-69. Doi: https://doi.org/10.1016/s0278-6915(00)00028-4. PMID 10882818.

  140. Baird, I.M.; Shephard, N.W.; Merritt, R.J.; Hildick-Smith, G. (2000). ‘Repeated dose study of sucralose tolerance in human subjects’. Food Chemical Toxicology. 38 (Supplement 2): S123-S129. Doi: https://doi.org/10.1016/S0278-6915(00)00035-1. PMID 10882825.

  141. Abou-Donia, MB; EI-Masry, EM; Abdel-Rahman, AA; McLendon, RE; Schiffman, SS (2008). ‘splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats’. J. Toxicol. Environ, Health Part A. 71 (21): 1415-29. Doi: https://doi.org/10.1080/15287390802328630. PMID 18800291.

  142. Daniells, Stephen (2009-09-02). “Sucralose safety ‘scientifically sound’: Expert panel”.

    Google Scholar 

  143. Rodero, A.B.; Rodero, L.S.; Azoubel, R. (2009), ‘Toxicity of sucralose in humans : a review’ (PDF). Int. J; Morphol. 27 (1): 239-244. Doi: https://doi.org/10.4067/s0717-95022009000100040.

  144. Grice HC; Goldsmith LS (2000). ‘Sucralose-an overview of the toxicity data’. Food Chem Toxicol. 38 (Suppl 2): S1-6. Doi: https://doi.org/10.1016/S0278-6915(00)00023-5. PMID 10882813.

  145. ‘SPLENDA Brand Sweetener FAQ: Safety & Product information: What research has been conducted to confirm the safety of SPLENDA ’. McNeil Nutritionals, LLC. Retrieved 2015-08-29.

    Google Scholar 

  146. Turner, James (April 3, 2006). ‘FDA amends regulations that include sucralose as a non-nutritive sweetener in food’. (PDF). FDA Consumer. Retrieved September 7, 2007.

    Google Scholar 

  147. Craig, SAS, Anderson, J.M. Holden, J.F. and Murray PR (1996) Bulking agents : Polydextrose in the book entitled. Carbohydrate as organic Raw Materials III. Willay online library (onlinelibrary.wiley.com) https://doi.org/10.1002/978352714899.ch2.

  148. Raninen, K, Lappi, J., my kpa nen, H and Poutanen, K (2011) Diatary fiber type effects physiological functionality : comparision with grain fiber inulin and polydextrose. Nut. Rev. 69 (1), 9-21.

    Google Scholar 

  149. Carmo do MMR, Walker, JCL, Novelo, D et al (2016) Polydextose : Physiological function and effect on health. Nutrients 8(9), 553; PMCID:PMC5037538.

    Google Scholar 

  150. Zhong J., Luo B., Xiang M., Liu H., Zhai Z., Wang T., Craig S.A.S. (2000) Studies on the effects of polydextrose inake on physiologic functions in Chinese people. Am. J. Clin. Nutr. 2000;72:1503-1509. [PubMed].

    Google Scholar 

  151. Probert H.M., Apajalahti J.H., Rautonen N., Stowell J., Gibson G.R. Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-state continuous culture system. Appl. Environ. Microbiol. 2004;70:4505-4511.doi: https://doi.org/10.1128/AEM.70.8.4505-4511.2004. [PMC free article].

  152. Lahtinen S.J., Knoblock K., Drakoularakou A., Jacob M., Stowell J., Gibson G.R., Ouwehand A.C. (2010) Effect of molecule branching and glycosidic linkage on the degradation of polydextrose by gut microbiota. Biosci. Biotechnol. Biochem. 2010;74:2016-2021. doi: https://doi.org/10.1271/bbb.10025. [Pub Med].

  153. Holscher H.D., Coporaso J.G., Hooda S., Brulc J.M., Fahey G.C., Jr., Swanson K.S. (2015) Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: Follow-up of a randomized controlled trial. Am. J. Clin. Nurt. 2015;101:55-64. Doi: https://doi.org/10.3945/ajcn.114.092064. [Pub Med]

  154. Hooda S., Boler B.M.V., Serao M.C.R., Brulc J.M., Staeger M.A., Boileau T.W., Dowd S.E., Fahey G.C., Jr., Swanson K.S. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 2012;142:1259-1265. Doi: https://doi.org/10.3945/jn.112.158766. [Pub Med].

  155. Besten G., Eunen K.V., Groen A.K., Venema K., Dirk-Jan R., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325-2340. Doi: https://doi.org/10.1194/jlr.R036012. [PMC free article] [Pub Med].

  156. Polydextrose-Wikipedia (en-m.wikipedia.org.)

    Google Scholar 

  157. Biter of S. Abbaoscs Namidi Z (2013) Production of low energy prebiotic dark chocolate using inulin, polydextrose and maltodextrose Lrancar J. of Nutrition 213 (8), 49-62.

    Google Scholar 

  158. Kim, K, Hansen, L and Setser, C (1986) Phase transition of wheat starch-water system containing polydextrose. J. Food Science 51(4),1095-1097.(https://doi.org/10.1111/j.1365-2621.1986.tb11249.x).

  159. Cummings J.H., Macfarlane G.T., Englyst H.N. (2001) Prebiotic digestion and fermentation. Am. J. Clin. Nutr. 2001; 73:415S-420S [Pub Med].

    Google Scholar 

  160. Tiihonen K.K., Royotio., Putaala H., Ouwehand A.C. (2011) Polydextrose functional fibre improving digestive health, satiety and beyond. Nutrafoods. 2011; 10:23-28. Doi: https://doi.org/10.1007/BF03223385.

  161. Albarracin M., Weisstaub A.R., Zuleta A., Mandalunis P., Gonzalez R.J., Drago S.R. (2014) Effects of extruded whole maize, polydextrose and cellusose as sources of fibre on calcium bioavailability and metabolic parameters of growing Wistar rats. Food Funct. 5:804-810. Doi: https://doi.org/10.1039/c3fo6042a. [Pub Med].

  162. Canfora E.E., Blaak E.E. (2015) The role of polydextrose in body weight control and glucose regulation. Curr. Opin, Clin. Nutr. Meab. Care. 18:395-400. Doi: https://doi.org/10.1097/MCO.0000000000000184. [PubMed].

  163. Polydextrose (2019, Sept.2019) Polydextrose : Health benefit, uses, side effect doses. RX List (https://www.rxlist.com>Supplements)

    Google Scholar 

  164. Santos E.F., Tsuboi K.H., Araujo M.R., Ouwehand A.C., Andreollo N.A., Miyasaka C.K. (2009) Dietary polydextrose increases calcium absorption in normal rats. Arq. Bras. Cir. Dig. 22:201-205. Doi: https://doi.org/10.1590/S0102-67202009000400004.

  165. Santos E.F., Tsuboi K.H., Araujo M.R., Falconi M.A., Ouwehand A.C., Andreollo N.A., Miyasaka C.K. (2010) Ingestion of polydextrose increase the iron absorption in rats submitted to partial gastrectomy. Acta Cir. Bras. 25:518-524. Doi: https://doi.org/10.1590/S0102-86502010000600011. [PubMed].

  166. Konings E., Schoffelen P.F., Stegen J., Blaak E.E. (2014) Effect of polydextrose and soluble maize fibre on energy metabolism, metabolic profile and appetite control in overweight men and women. Br. J. Nurt. 2014;1:111-121. Doi: https://doi.org/10.1017/S0007114513002183 [PubMed].

  167. Astrup A. (2011) The relevance of increased fat oxidation for body-weight management: Metabolic inflexibility in the predisposition to weight gain. Obes. Rev. 12:859-865. Doi: https://doi.org/10.1111/j.1467-789X.2011.00894.x [PubMed] (2014).

  168. Shulman G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371:1131-1141. doi: https://doi.org/10.1056/NEJMra1011035. [PubMed].

  169. Blundell J.E., Lawton C.L., Cotton J.R., Macdiarmid J.I. (1996) Control of human appetite:Implications for the intake of dietary fat. Annu. Rev. Nutr. 16:285-319. Doi: https://doi.org/10.1146/annurev.nu.16.070196.001441 [PubMed].

  170. Ibarra A., Astbury N.M., Olli K., Alhoniemi E., Tiihonen K. (2015) Effects of polydextrose on different levels of energy intake. A systematic review and meta-analysis. Appetite. 87:30-37. Doi: https://doi.org/10.1016/j.appet.2014.12.099 [PubMed].

  171. Costabile A., Fava F., Royotio H., Forssten S.D., Olli K., Klievink J., Rowland I.R., Ouwehand A.C., Rastall R.A., Gibson G.R., et al. (2012) Impact of polydextrose on the faecal microbiota: A double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br. J. Nutr. 108:471-481. Doi: https://doi.org/10.1017/S0007114511005782 [PubMed].

  172. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Fling H.J., Salminen S., et al. (2014) Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol.11:506-511. Doi: https://doi.org/10.1038/nrgastro.2014.66 [PubMed].

  173. Roberfroid M., Gibson G.R., Hoyles L., McCarthey A.L., Rasall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Sthal B., et al. (2010) Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 104:S1-S63. Doi: https://doi.org/10.1017/S0007114510003363 [PubMed].

  174. Peuranen S., Tiihonen K., Apajalahti J., Kettunen A., Saarinen M., Rautonen N. (2004) Combination polydextrose and lactitol affects microbial ecosystem and immune responses in rat gastrointestinal tract. Br. J. Nutr. 91:905-914. Doi: https://doi.org/10.1079/BJN20041114 [PubMed].

  175. Putaala H., Makivuokko H., Tiihonen K., Rautonen N. (2011) simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells. Mol. Cell. Biochem. 357:235-245. Doi: https://doi.org/10.1007/s11010-011-0894-2 [PubMed].

  176. Fava F., Makivuokko H., Silijander-Rasi H., Putaala H., Tiihonen K., Stowell J., Tuohy K., Gibson G., Rautonen N. (2007) Effect of polydextrose on intestinal microbes and immune functions in pigs. Br. J. Nurt. 2007;98:123-133. Doi: https://doi.org/10.1017/S0007114507691818 [PubMed].

  177. Position of the American Dietetic (1998) Association (use of nutritive and nonnutritive sweeteners). J Am Diet Assoc. 98:580-587.

    Google Scholar 

  178. Joint Expert Committee on Food Additives JECFA. Geneva: [(accessed on 10 December 2015)]. Evaluation of Certain Food Additives and Contaminants. (World Health Organization Technical Report Series 759). Thirty-First Report of the Joint FAO/WHO Expert Committee on Food Additives. Available online : http://www.apps.who.int/iris/bitstream/10665/42849/1/WHO_TRS_922.pdf. [PubMed].

    Google Scholar 

  179. Joint Expert Committee on Food Additives (JECFA). (2012) ‘Isomalt’. International Programme on Chemical Safety (IPCS). Retrieved 15 December 2012.

    Google Scholar 

  180. Wohlfarth, Christian. (2006) CRC Handbook of Enthalpy Data of Polymer-Solvent Systems. CRC Press, Google Books result: ISBN 0-8493-9361-2.

    Google Scholar 

  181. Schiweck, H. et al (2010) Ullmanns’ Encyclopedia of Industrial chemistry 7th ed. (2010), NY, NY John Wiley Sons, sugar alcohols. Online posting date : May 30, 2011.

    Google Scholar 

  182. Takatsuka, T. et al (2008) Clin Oral Investig-12 (Isomalt effect on mineral nutrient uptake) 173-177

    Google Scholar 

  183. EFSA (2011) EFSA comprehensive European food consumption data base in exposure assessment EFSA Journal, 2 March, 2011.

    Google Scholar 

  184. Kelli Mc Grane : (2020, May 19) https://www.healthline.com >nutrition.

    Google Scholar 

  185. Caloriecontrol council (2020) Isomalt. http//ww.caloriencontrol.org>isomalt

    Google Scholar 

  186. Mineo, H. et al (2002) sugar alcohol and Ca…Dig.Dis.Sci. 47(6):1326-1333.

    Google Scholar 

  187. Tanner, K.E. (2012) Small but extremely tough Science 336, (6086), 1237-1238.

    Google Scholar 

  188. Oxford companion to sugar and sweets. (2015) Oxford univ.press.2015-04-01/IBNS 9780/993/3624.

    Google Scholar 

  189. Makinen K.K. (2016). Disturbance associated with consumption of sugar alcohols with special consideration of xylitol. Int.J. Dentistry. 1-6 (https://doi.org/10.1155/2016/596790).

  190. Ritter C. (1841) Uber die Geographics Verbeitung dis Zucherrohr C.S. ooficanarum L.) inder Alton Walt Vor dessen Verflanzung India Neve Welt Academic Der Wissencharften zu Berlin, philogische and Historiche Abhanddlungen, 1839, P. 305

    Google Scholar 

  191. Rofen Feld (1956) sugarcane around the world university of Chicago press, p.268

    Google Scholar 

  192. mukharjee S.k (1957), botanical Gazette, 119.

    Google Scholar 

  193. brandes, E.W (1956) proc. Int. soc, sugarcane technol. 9, 731.

    Google Scholar 

  194. Husz, G.S. (1972) sugarcane cultivation and fertilization. Ruhr.stickstoff,A.G Baichum, West Germany.

    Google Scholar 

  195. James, G (2004) (ed) sugarcane, 2nd edition, Blackweel Sel, Ltd, oxford, U.K, P.ILF.

    Google Scholar 

  196. Dwivedi, R.S (2000) physiology of sugarcane in: Shahi, H.N et al (eds). 50 years of sugarcane research in India. II SR, Lucknow. India.

    Google Scholar 

  197. Rao, J.J (1989) in: Naidu, k.m et al (eds) sugarcane varietal improvement. S.B.I (ICAR), Coimbatore, India, P.83.

    Google Scholar 

  198. Sreenivasan, T.V (1989) In: Naidu, K.M et al (eds) sugarcane varietal improvement, S.B.I. (ICAR), Coimbatore, India, P177.

    Google Scholar 

  199. Berding, N and Roach B.T (1987) In: Heinz, D.J (ed) sugarcane improvement through Breeding, Elseveir, Amsterdam, Oxford, P143.

    Google Scholar 

  200. Dwivedi, R.S and Srinivastava, K.K (1993) in: Singh, G.B and Sinha, o.k (ed) sugarcane research and development in subtropics, IISR, Lucknow, India, P 143.

    Google Scholar 

  201. Dwivedi, R.S (1999) Un nurtured and untapped super sweet non sacchariferous plant species in India. Current Science, 76, 1454-1461.

    Google Scholar 

  202. Lipman, E. O van (1929) Geschiche des Zuckers 2nd edn. Verlagspringer berlin (reprinted with annex, 1934, sandig, Nieder Walluf 1970) P 732.

    Google Scholar 

  203. Pharma Tips (2003 Sept. 30) Sugarcane: History, Pharmacognosy, cultivation and medicinal uses. (www.pharmatips.in>article>sugar).

    Google Scholar 

  204. Firdous, D and Marwah, S. (2012) Health benefit of sugarcane juice and its side effect. Lybrate.com (Google).

    Google Scholar 

  205. Chen, GL, Zheng, F.J., Sun J. et al (2015) production and characteristics of high quality vinegar from sugarcane. Sugar Tech. 17(1), 89-93.

    Google Scholar 

  206. Salunkhe, D.K and Desai, B.B 1988 Post harvest Biotechnology of sugar crops. CRC Press Inc Florida PP. 219.

    Google Scholar 

  207. Cooke, D.A and Scott, R.K (1993) In: Cook, D and Scott, R.K (eds) sugar beet crop: science in practice Chapman and Hall, London, PIXV.

    Google Scholar 

  208. Lippmann, E.O. van (1925) Geschichter der Rube (Beta) als kuttur P Flangza verlag Srinagar, berlin, P 184.

    Google Scholar 

  209. Deerr, N (1949/50). The history of sugar, Vol I 742 Chapman and hall, London.

    Google Scholar 

  210. Barocka, K.H (1985) In: Fischbeck, G. etal (eds) Lehrbuch dis Zuchtung land Wirschafilcher, berlin and Flambar PP 245.

    Google Scholar 

  211. Williams, J.T (1975) Botany j of Linnaean Society. 7,89.

    Google Scholar 

  212. Artchwager, E 1926 J Agri. Res. 33,143.

    Google Scholar 

  213. Coyle, D. (2017) Nine impressive health benefit of sugar beet. healthline.com (2017 May)

    Google Scholar 

  214. Quesada, A, Afschar, AS and Wagner, E (1994) Microbial production of Proponic acid and vit. B12 using molasses or sugar. Applied Microbiology and Biotechnology 41, 378-383.

    Google Scholar 

  215. Taheri, P and Tarighi, S (2011) A survey on basal resistance and riboflavin induced defence response of sugar beet against Rhizoctoni solani. J. Plant physiology 168 (10), 1114-1122.

    Google Scholar 

  216. Ferraris, R and Stewart, G.A (1979) J Aust. Inst. Agri. Sci. 45 (3), 156.

    Google Scholar 

  217. Martin, J.H (1970) In: Wall, J.S and ROSS, W. (eds Sorghum production and utilization, major feed and food crops in agricultural Sci. and Feed Series. AVI publishing, West Port, Conn P 12.

    Google Scholar 

  218. Ratnavathi, C.V Rao, B.D and Seetharam, N (2003) Sweet Sorghum Stalk : a suitable raw material for fuel alcohol production, NRCS (ICAR), Hyderabad, India P 68.

    Google Scholar 

  219. Park, K.B. and Lee, M.H. (1991) crop Sci. 36 (4), 300 (in Korian language).

    Google Scholar 

  220. Chamberi land, E (1976) Naturalists Canadian, 103 (5), 543.

    Google Scholar 

  221. Chatterjee, A.C, Joshi, S.N, Nadgauda, K.B, Kalaswad, S.R, mah, B.R and taware, V.P 1978 Sorghum millet Abst. 3 912, 1061.

    Google Scholar 

  222. Rajvanshi, A.K, Tapes, D.K, jorapur, R.m and Nimbkar, N (1993) Jaggery and Syrup from sweet Sorghum. NARI-GUR 1993, Nimbkar Agri. Res. Int., Phalton, Maharashtra, India, P 10.

    Google Scholar 

  223. Nadir, N, Mel, M, Karim, MIA, Yunus, R.N. (2009) comparison of sweet sorghum and cassava for ethanol production by using Saccaromyces cerevisia. J. applied Sci. 9 (17), 3068-3073.

    Google Scholar 

  224. Wortmann, C.S. and Ragassa T. (2011) sweet sorghum as bioenergy crop for US great plain sweet sorghum. Intechopen.com doi: https://doi.org/10.5772/7066.

  225. Mathur, S, Umakant, AU, Sharma, N.K. (2017) sweet sorghum as biofuel feed stock-Recent advances and available resources. Biotechnology Biofuel 10, 146.

    Google Scholar 

  226. Vanarnala J.K.P., Aaron, R.M., Srinivas Rao, P., Reddivari, L,. Reardon, K-Food Sci. Nut. 2018 (17) 2867-2881.

    Google Scholar 

  227. Podkowka, Z. and Lycna, P. (2011) Chemical composition and quality of S. sorghum silage. J. central European Agri. 12 (2), 294-303.

    Google Scholar 

  228. Bongtrom, G (1968) Principles of Food Science. Voll, macmillan, New York.

    Google Scholar 

  229. Willits, Co (1950-51) In: Crops in peace and war. The year book of agriculture. VS Department of agriculture, Washington, D.C p 316.

    Google Scholar 

  230. Little, E.L. Jr (1944) Acer Irandidentatum in Oklahoma, Rhodora, 46,445.

    Google Scholar 

  231. Rath, R.H., Under wood, J.C., Smith, C.E. and yang, H.Y. 1972 Mapple serup production from USDA Forest servia researchnote. PWW-181. (USA).

    Google Scholar 

  232. “Rule of 86” www.silloway maple.com

    Google Scholar 

  233. Bi, W, Gao, Y, Shen, J et al (2016) Traditional uses of phyto chemistry, and pharmacology of genns Acer (Mapple)-A review. J. Ethnopharmacology 189,31-60.

    Google Scholar 

  234. “Dahlia” in Doyglas Harper.online etymology Dictionary 2001-2021.

    Google Scholar 

  235. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=37224#null.

  236. http://pfaf.org/User/Plant.aspx?LatinName=Dahlia+pinnata.

    Google Scholar 

  237. Bahmanzadegan, A and Rowshan (2018) Static head space analysis and polyphenol contents of T. erecta, M. incana, E. cheriri, G. gradiflora and D. pinnata in Iran. Analytical chemistry letter 8 (6), 794-802.

    Google Scholar 

  238. Nsbimane, C. and Jiang B (2011) The chemical composition of some dahlia garden tubers. British food J-113 (9) 1081-1093.

    Google Scholar 

  239. Saeed , M, Muhammad, E et.al. (2017). Chicory herb : chemical composition pharmacology, nutrition and healthical applications Int. J. Pharmacology, 13(4), 351-360.

    Google Scholar 

  240. Aisa, A, xin, x and Tang D. (2020) chemical constituent and their pharmacological activity of plants from eichorium genus. Chinese Herbal Medicines 12(3), 224-236

    Google Scholar 

  241. Street, R.A., Sidna, J and Prinsloo, G. (2013) C. intybus: Traditional uses, Phytochemistry, Pharmacology and Toxicology. Chicorium int. hindawi.com, 2013, ID 579319 https://doi.org/10.1155/2013/5793/9.

  242. Zhang, X, Wu, C and XU, X (2013-April, 16) PLOS 8 (4) e61922 doi: https://doi.org/10.1371/journal.pone.

  243. Cha, J.Y., Park, L.K., cho, Y.S. (2010). Hepatoprotective effect of Chicory root extract against oratic acid.

    Google Scholar 

  244. Hassan H.A. and Yousef M.I (2010) Ameliorating effect of chicory (Cichorium intybus L)-supplemented diet against nitrosamine precursors-induced live injury and oxidative stress in male rats. Food and Chemical Toxicology,48 (8-9) (2010), pp. 2163-2169.

    Google Scholar 

  245. Sultana S. Perwaiz S., Iqbal M., Athar M. (1995). Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage. Journal of Ethnopharmacology, 45 (3), pp. 189-192.

    Google Scholar 

  246. Pan W.H., Xu X.Y., Shi N., Tsang S., Zhang H.J. (2018) Antimalarial activity of plant metabolites. International Journal of Molecular Science, 19 (5), p. 1382.

    Google Scholar 

  247. Hozayen, W.G., El-Desouky, M.A., Soliman H.A., Ahmed R.R., Khalief A.K. (2016) Antiosteoporotic effect of Petroselinum crispum, Ocimum basilicum and Cichorium. Complementary and Alternative Medicine, 16, pp. 165-175.

    Google Scholar 

  248. Wu W. (2016). Effect of superfine powder of Cichorium intybus L. root on intestinal microflora in immunosuppressive mice. Natural Product Research and Development, 28, pp. 429-432.

    Google Scholar 

  249. Shaikh T., Rub R.A., Sasikumar S. (2016). Antimicrobial screening of Cichorium intybus seed extracts. Arabian Journal of Chemistry, 9, pp. S1569-S1573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Saccharide Sweet (SS) Principles, Classification and Structural and Functional Details of SS Sweeteners and Plants. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_4

Download citation

Publish with us

Policies and ethics