Skip to main content

Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 387 Accesses

Abstract

Understanding of the sweetness of an organic or inorganic substance is complex process and it is ingrained with the intricacies of psychological perception, molecular structure, chemical nature and environmental conditions e.g. pH, temperature, type of medium etc. Sucrose tastes sweet but when it is dissolved in water its sweetness declines with time because under normal conditions, it continuously degrades into two components viz. dextrose (glucose) and levulose (fructose). Varvil [1] illustrated the sweetness of fructose as more intense, but it dissipated rapidly. Secondly, the sweetness of the dextrose is perceived more slowly than fructose, but more rapidly than sucrose, and it lingered longer than fructose. Thirdly, sucrose was perceived most slowly and lingered the longest as compared to dextrose and fructose (Fig. 3.1) [2]. Lot of research data have been accumulated, but it is still enigmatic to understand the physical and chemical basis of sweetness sensation. Some 100 chemical substances covering a very wide variety of molecular structures exhibit sweetness in varying intensities. Considering sucrose sweetness as unity, the intensity in sweetness may vary from very slight to 10,000 times or even 200,000 times (Tables 3.1 and 3.2). Many attempts have been made to explain why does a substance taste sweet. The bases of sweetness are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varvil, R.d. (1985). Food Scientist, Sweeteners application and technology service group. A.E. Stanley Manufacturing Company, Decatur III.

    Google Scholar 

  2. Dziezak, J.d. (1986). Food Technology 40(12), 116.

    Google Scholar 

  3. Georg Cohn (1914) Die organischem Geschamackstoffe. Berlin: F. Siemeomoth.

    Google Scholar 

  4. Orertly and Mayers 1919 – in - Moncrieff, R.W. (1944). The Chemical Services, John Wiley. New York. Pp 236.

    Google Scholar 

  5. Shallenberger, R.S. 1963 J. Fd. Sci. 28, 584.

    Google Scholar 

  6. Shallenberger, R. S. and Acree, T.E. (1967). Nature, 216, 480.

    Google Scholar 

  7. Kier, l.B. (1972). J. Pharm. Sci. 61, 1394.

    Google Scholar 

  8. Shallenberger, R. S. (1980). Food Technology 34(1), 65.

    Google Scholar 

  9. Tinti, J.M.; Nofre, C. Fr. (1991). Sweeteners. In Walter, d.E.; Orthoefer, F.J.; and Dubois, G.E. (eds.). Discovery, Molecular design and Chemo reception. American Chemical Society, Washington, DC. 207.

    Google Scholar 

  10. John, E. Hayes (2008), “TransdiCiplinary perspective on Sweetness”. Chemosensory Perception. 1(1): 48–57.

    Google Scholar 

  11. Tinti, J.M.; Nofre, C. Fr.; and Durozard, d. (1980). Nature-Wissenshaften. 68, 143.

    Google Scholar 

  12. Tinti, J.M.; Nofre, C. Fr.; and Peytavi, A.M.Z. (1982). Lebensm. Unters. Forsch. 175, 266.

    Google Scholar 

  13. Nofre, C. Fr.; and Tinti, J.M.; and Chatzopoulos, Ouar, F. (1987). Euro. Patent Appl. 0241395.

    Google Scholar 

  14. Nofre, C. Fr.; and Tinti, J.M.; and Ouar Chatzopoulos, F. (1988). Euro. Patent Appl. 0289430.

    Google Scholar 

  15. Tinti, J. M. and Nofre, C. (1990) Why does a Sweetener Taste Sweet?/A New Model. In Sweeteners/Disocovery, Molecular Design, and Chemoreception; ACS Symposium Series 450; American Chemical Society: Washington, DC, 1990; pp 206-213.

    Google Scholar 

  16. Birch, G.G., and Lee, C.K. (1971). The chemical basis of sweetness in model sugars. In. Birch, G.G., Green, l.F., and Coulson, C.B. (eds). Sweetness and Sweeteners. Applied Science, London, p 112.

    Google Scholar 

  17. Piutt, A. (1986). C.R. Acad. Sci. Paris, 103, 134.

    Google Scholar 

  18. Inglett, G. E. 1971. Recent sweetener Research, 2nd Ed; Botanicals, Po Box 3034, Peoria, Illions, 61614 USA and Wikipedia 2014 a free Encyclopedia. Available from URL: http//en.wikipedia. org/wiki/sweetness.

    Google Scholar 

  19. Walter, d.E. (1991). Rational Discovery of sweeteners. In: Walter, d.E.;; Orthoefer, F.T. and Dubois, G.E. (eds). Sweeteners: Discovery, molecular design and chemoreception. American Chemical Society. Washington. d.C., P 1-25.

    Google Scholar 

  20. Beets, M.C.J. (1978). Structure activity relationship in Human chemoreception. Applied Science, London.

    Google Scholar 

  21. Van der Wel, H.; Van der Heijden, A.; and Peer, H.G. (1987) Food Review Vol 3, 193.

    Google Scholar 

  22. Januz, J.M. (1989). In. Grenby, T.H. (ed.) Progress in Sweetness. Elsevier. Applied Science. London. P 1.

    Google Scholar 

  23. Mazur, R.H.; Schlatter, J.M.; Goldkamp, A.H. (1969). J. Amer. Chem. Soc. 91, 2684.

    Google Scholar 

  24. Shallenberger, R. S.; Acree, T.E.; and Lee, C.Y. (1969). Nature, 221, 555.

    Google Scholar 

  25. Brussel, l.B.P.; Peer, H.G. Van der Heijden, A. (1975) Lebensm. Unters-Forsch. 159, 337

    Google Scholar 

  26. Fujno, M.; Wakimasu, M; Mano, M.; Tanaka, K; Nakajima, N.; Aoki, J. (1976). Chem. Pharm. Bull. 24, 2112.

    Google Scholar 

  27. Belitz, H.d.; Chen, W., Jugel, H., Treleano, R. Wieser, H.; Gasteiger, j.; and Marsili, M. (1979). In Bourdreau, J.C. (ed). Food Taste Chemistry. ACS Symposium, Ser. No 115. American Chemical Society, Washington, d.C., p 93.

    Google Scholar 

  28. Dubois, G. E. 1982 Non nutritive sweeteners: search for sucrose mimics. In Annual Reports in Medicinal Chemistry. Vol. 17. Academic press, inc: New York. P. 323-332

    Google Scholar 

  29. Van der Heijden, A., Van der Wel, H., and Peer, H.G. (1985). Chem. Senses. 10, 57.

    Google Scholar 

  30. Van der Heijden, A., Brussel, l.B.P., Peer, H.G.. (1978) Food Chem. 3. 207.

    Google Scholar 

  31. Goodman, M.; Coddington,, J.; Mierke, d.F.; Fuller, W.d. (1987). J. Am. Chem. Soc. 109, 4712.

    Google Scholar 

  32. Hopfinger, A.J., and Walters, d.E. (1984). In Warren, C.B.; and Walradt, J.P. (eds.) ACS Symp. Ser. 261. Amer,.Chem. Soc. Washington, DC., P 19.

    Google Scholar 

  33. Deustch, E.W., and Hansch., C. (1966). Nature, 211, 75.

    Google Scholar 

  34. Miyashita, Y., Takahashi, Y., Takayama, C., Suni, K., Nakatsuka, K., Ohkubo, T., Abse, H., and Sasaki, S. (1986). J. Med. Chem. 29, 906.

    Google Scholar 

  35. Murray, R.G.; and Murray, A. (1971). Contribution of Sensory Physiology. Vol V., Academic Press, New York.

    Google Scholar 

  36. Scott, T.R.; and Yaxaley, S. (1989). In. Cagan, R.H. (ed) Natural mechanisms in taste, CRC, Boca Raton, FL, P 147.

    Google Scholar 

  37. Faurion, A. (1987). In Skrandies, W. (ed) Progress in Sensory Physiology, Vol 8. Spring Verlag, Berling. P 129

    Google Scholar 

  38. Hiji, Y. (1975). Nature. 256, 427.

    Google Scholar 

  39. Yamamoto, T. (1989). In. Cagan, R.H. (ed) Natural mechanism in taste, CRC, Boca Raton, FL 197.

    Google Scholar 

  40. Sato, M. (1985). Japan J. Physiology. 35, 875

    Google Scholar 

  41. Streim, B.J.; Pace, U.; Jehavi, U.; Naim, H.; and Lancet, d. (1989). Biochem. J. 260, 121.

    Google Scholar 

  42. Morgolskee, R. F. (2002) J. Biological Chem. 277, 1–4.

    Google Scholar 

  43. Bizzard, DA, Kotalus, B., (1997) Frank M. E. (1999) Chem. Senses 24: 373–385.

    Google Scholar 

  44. Montmaefeur, J.P, Libeythes, SD, Martunami H, Buck l. B. (2001) Not. Neurosci. 4: 492–498.

    Google Scholar 

  45. Sainz, E, Korthey, J. N., Battey, J. F., Sullivan, (2001) J. Neurochem, 77: 896–903.

    Google Scholar 

  46. Fuller J. l. (1974) J. Hered. 65: 33–36.

    Google Scholar 

  47. Nelson, G. Hoon, MA, Chandrocekhor, J. zang, Y, Ryba, NJP, Zuker C.S. (2001) cell 106: 381–390.

    Google Scholar 

  48. Striem, B. J., Pace, U., Zehavi, U, Naim M., Lancet d. (1989) Biochem. J. 260: 121–126.

    Google Scholar 

  49. Striem, B. J., Naim, M, Cross Ref., Lindemann B. (1991) Cell Physiol, Biochem. 1:46–54.

    Google Scholar 

  50. Tonosaki, K., Funa Roshi M. (1988) Nature 331: 354–356.

    Google Scholar 

  51. Bernhardt S. J, Naim M., Jahavi W. U., Lindemann B. (1996) J. Physiol. 490:325-336.

    Google Scholar 

  52. Smith. D. V., Margolskee, R. F., (2001) Making sense of Taste. Scientific American 32.

    Google Scholar 

  53. Ruiz-Avila L., Mc Laughin S.K., Wildman, D., McKinn, P. J., Robi chon A, Spikofsky, N., and Margolskee R. F. (1995) Nature 376: 80-85.

    Google Scholar 

  54. Ming D., Ruiz. Avila L., Morgolskee R. F. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:8933-8938.

    Google Scholar 

  55. Ming, d, Ninomiya, y., Margolskee, R. F. (1999) Proc. Nati. Acad. Sci. U.S.A. 96: 9903-9908.

    Google Scholar 

  56. Cygankiewicz, A. l., Maslowka, A, Krajewska, W. M., 2014. Critical Review in Food Science and Nutrition. 54, 771.

    Google Scholar 

  57. Van der Heijden, A.; Van der Wel, H., and Peer, H.G. (1985). Chem. Senses. 10, 73.

    Google Scholar 

  58. Mazur, R.H.; Reuter, J.A.; Swaitek, K.A.; and Schlatter, J.M. (1973) J. Med. Chem. 16, 1284

    Google Scholar 

  59. Temussi, P.A., Lelj, F., Taneredi, T., Castiglion Morelli, M.A., and Postore, A. (1984). Int. J. Quantum Chem. 26, 889.

    Google Scholar 

  60. Culberson, J.C.; and Walter, d.E. (1991). Three dimentional model for sweet taste receptor. In. Walters, d.E.; Orthoefer, F.T.; and Dubois, C.E. (ed) Sweeteners: Discovery, molecular design and chemo reception. American Chemial Society, Washington, DC. P 214.

    Google Scholar 

  61. Naim M. et al. (2006) Stimulation of Taste cells by sweet taste compound. In Optimizing sweet taste in food. Spillane, W. J. Ed: CRC Press: Boca Raton, pp. 3–29.

    Google Scholar 

  62. Masuda, K. et al (2012) PLoS, one, 7, 1.

    Google Scholar 

  63. Fernstrom, J. d., Munger, S. d., Sclafani Anthony, Araujo, I. E., Roberts, A, and Mohinary, S. (2012). Mechanism of sweetness; J. Nutur. 142(6), 1134 S – 1141S.

    Google Scholar 

  64. Beltram, M.C., Doring, T. and Linder, J. d. d. 2018. Sweetner and Sweet taste enhancer in the food industry. Food Science Technology Compinas 38, (2), 181–187.

    Google Scholar 

  65. Yarmolinsky DA, Zuker CS, Ryba NJ (2009). Common sense about taste: from mammals to insects. Cell. 139: 234–44.

    Google Scholar 

  66. Vigues S, Dotson CD, Munger SD (2009). The receptor basis of sweet taste in mammals. Results Probl Cell Differ. 47: 187–202.

    Google Scholar 

  67. Nie Y, Vigues S, Hobbs JR, Conn GL, Munger SD (2005). Distinct contributions of T1R3 taste receptor subunits to the ditection of sweet stimuli. Curr Biol. 15: 1948–52.

    Google Scholar 

  68. Xu H, Staszewski l, Tang H, Adler E, Zoller M, Li X. (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA. 101:14258-63.

    Google Scholar 

  69. Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF (2005). Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem. 280: 34296-305.

    Google Scholar 

  70. Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M. (2005) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem. 280: 15238-46.

    Google Scholar 

  71. Bachmanov AA, Tordoff MG, Beauchamp GK (2001). Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses. 26:905–13.

    Google Scholar 

  72. Reed DR, LiS, LiX, Huang l, Tordoff MG, Starling-Roney R, Taniguchi K, West DB, Ohmen JD, Beauchamp CK, et al. (2004) Polymorphisms in the taste receptor gene (Taslr3) region are associated with saccharin preference in 30 mouse strains. J Neurosci. 24:938-46.

    Google Scholar 

  73. Pronin AN, XuH, Tang H, Zhang l, LiQ, LiX. (2007) Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol. 17: 1403-8.

    Google Scholar 

  74. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS. (2003) The receptors for mammalian sweet umami taste. Cell. 115:255-66.

    Google Scholar 

  75. Muller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ (2005). The receptors and coding logic for bitter taste. Nature 434:225–9.

    Google Scholar 

  76. Glendinning JI, Breinager l, Kyrillou E, Kacuna K, Rocha R, Sclafani A (2007). Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav. 101:331-43.

    Google Scholar 

  77. Sclafani A, Abrams M (1986). Rats show only a weak preference for the artificial sweetener aspartame. Physiol Behav. 29:253-6.

    Google Scholar 

  78. Sclafani A, Clare R (2004). Female rat s show a bimodal preference response to the artificial sweetener suralose. Chem Senses. 29: 523-8.

    Google Scholar 

  79. Sclafani A, Nissenbaum JW (1985). On the role of the mouth and gut in the control of saccharin and sugar intake: A reexamination of the sham-feeding preparation. Brain Res Bull. 14:569-76.

    Google Scholar 

  80. Sclafani A, Zukerman S, Glendinning JI, Margolskee RF (2007). Fat and carbohydrate preferences in mice: The contribution of a – gustducin and Trpm5 taste signaling proteins. Am J physiol Regul Integr Comp Physiol. 293:R1504-13.

    Google Scholar 

  81. Zhang Y. Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu d, Zuker CS, Ryba NJ (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 112:293-301.

    Google Scholar 

  82. Hamilton RB, Norgren R. (1984) Central projections of gustatory nerves in the rat. J Comp Neurol. 222:560-77.

    Google Scholar 

  83. Norgren R, Leonard CM (1971) Taste pathways in rat brainstem. Science. 173:1136–9.

    Google Scholar 

  84. Yaxley S, Rolls ET, Sienkiewicz ZJ. Scott TR (1985). Gustatory responses of single neurons in the frontal opercular cortex of the macaque monkey. Neurosic Lett Suppl. S456.

    Google Scholar 

  85. Yaxley S, Rolls ET, Sienkiewicz ZJ (1990). Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol. 63:689-700

    Google Scholar 

  86. de Araujo IE, Rolls ET, Kringelbach ML, McGlonie F, Phillips N (2003). Taste-olfactory convergence, and the representation of the pleasantness of flavor, in the human brain. Eur J Neurosci. 18:2059-68.

    Google Scholar 

  87. Small DM, Gregory MD, Mak YE, Gitelman d, Mesulam MM, Parrish T (2003). Dissociation of neural representation of intensity and affective valuation in human gestation. Neuron. 39:701-11.

    Google Scholar 

  88. Rolls ET, Sienkiewicz ZJ, Yaxley S (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbito frontal cortex of the macaque monkey. Eur J Neurosci. 1:53-60.

    Google Scholar 

  89. Smeets PA, Weijzen P, de Graaf C, Viergever MA (2011). Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. Neuroimage. 54:1367-74.

    Google Scholar 

  90. Bailey CS, Hsiao S, King JE (1986). Hedonic reactivity to sucrose in rats: modification by pimozide. Physiol Behave. 38:447-52.

    Google Scholar 

  91. Geary N, Smith GP (1985). Pimozide decreases the positive reinforcing effect of sham fed sucrose in the rat. Pharmacol Biochem Behav. 22:787-90.

    Google Scholar 

  92. Wise RA (2006). Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci. 361:1149-58.

    Google Scholar 

  93. Xenakis S, Sclafani A (1981). The effects of pimozide on the consumption of a palatable saccharin- glucose solution in the rat. Pharmacol Biochem Behav. 15:435-42.

    Google Scholar 

  94. Hermandez l, Hoebel BG (1988). Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 42:1705-12.

    Google Scholar 

  95. Kelley AE, Schiltz CA, Landry CF (2005). Neural systems recruited by drug – and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 86:11-4.

    Google Scholar 

  96. de Araujo IE, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA, Simon SA (2008). Food reward in the absence of taste receptor signaling. Neuron. 57:930-41.

    Google Scholar 

  97. Anonymous (1985). Sweet choice. Calorie content council. Atlanta.

    Google Scholar 

  98. Inglett, G.E. (1976). A history of sweeteners – Natural synthetic J. Toxicol. Environ. Health 2(1), 207–214.

    Google Scholar 

  99. O’Brien, l.; and Gelardi, R.C. (1981) Chemtech. 11, 274.

    Google Scholar 

  100. Inglett, G.E. (1971). Intense sweeteners of natural origin. In Birch, G.G.; Green, l.F., and Coulson, C.B. (eds) Sweetness and sweeteners. Applied Science, London, P 32.

    Google Scholar 

  101. Kinghorn, d.d.; and Soajarto, d.d. (1986).CRC in Plant Sciences, 4(2): 79.

    Google Scholar 

  102. Keerthi Priya, Gupta, V.R.M. and Srikanth, K. 2011. Natural Sweeteners – A Complete Review – J. Pharmacy Research, 4(7), 2034–2039.

    Google Scholar 

  103. Nicol, W.M. (1979) Sucrose and Food Technology. In Birch, G.C. and Parker, K.J. (ed) Sugar: Science and Technology. Applied Science. London. P 211.

    Google Scholar 

  104. Inglett, G.E. (1981). Sweeteners – A Review. Food Technology 35(3), 37.

    Google Scholar 

  105. Dwivedi, R.S. (1999) Current Science 70(11), 1454

    Google Scholar 

  106. Dziezak, J.d. (1986). Food Technology 40, 112.

    Google Scholar 

  107. Robinson, J.W. (1975). Food Eng. 47(5), 1.

    Google Scholar 

  108. Anonymous (2017) Bullet Proof Alternative sweeteners. Recipes Lab. News letter. (Feb issue): P. 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_3

Download citation

Publish with us

Policies and ethics