Skip to main content

Commercial Production of Natural NSSS Sweeteners: A Concise Sketch

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 371 Accesses

Abstract

More than 100 vegetal non saccharide super Sweet (NSSS) principles are known but not much attention has been paid on their commercial production due to many social and political reasons besides lack of GRAS certificate from FDA. Only few have been launched commercially as sucrose substitute till date. Even the production of these are not in proper shape because of intermittent controversies on the quality of products and relatively less awareness about the utilities of products besides perhaps in adequate market. These natural NSSS are chemically quite diversified and represent terpenoids, flavonoids and protein class of compound. A concise sketch of commercial production of seven NSSS principles used as zero caloric sweeteners or sweeteners modifiers are presented below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinghorn A. D. and Kim, J. (1993). Potently sweet compounds from plants. Techniques of isolation and identification in Bioadiver Natural products CRC Press inc. P 173 – 198 Yan, H and ROW, K. H. (2008) Extraction of glycyrrhizic acid and glabridin from licorice. Int. J. Mol. Sci, 9(4), 571 – 577.

    Google Scholar 

  2. Tian, M., Yan, H. and HO Bery, K. (2008) extraction of glycyrrhizic acid and glabridins from licorice. Int. J. mol. Sci. 9(4), 571-577.

    Google Scholar 

  3. Pandey, D. K. and Ayangla (2018) Biotechnolocial aspects of production of natural sweetners glycy rrhizin form glycyrrhiza phytochemistry reviews, 17(2), 397 – 430.

    Google Scholar 

  4. Lee C. H. 1975 intense sweetener from Lohankuo (Momordica grosvenorii) Expermentia 31(5):533

    Google Scholar 

  5. Procter & Gamble (1995) in Dounmton G. E. et al (2 May 1995) “Process and composition of sweet juice from cucurbitaceae fruit, patented number US54117S5A” (http://www.google.com/patent/US5411755). US patent and trade office, assignee: the procter and Gamble Co.

  6. Dharmananda (2004). “Luo han guo: sweet fruit used as sugar substitute and medicinal herb” (http://www.itmonline.org/orts/luohanguo.htm). institute of Traditional medicine online. Retrievedzo cot. 2012.

  7. Tachibana, Y., Hashimoto, Y., Hagiwara, Y., Konishi, T. and Kurokawa, N (1974). Quantitative analysis of Phyllodulcin in” amacha (sweet Hydrangea) by means of this layer chromatography. Yakugaku Zashi, 94, 1167.

    Google Scholar 

  8. Kinghorn, A.D., Chin, Y.W. and Pan, L. 2010 Natural products as sweeteners and sweetness modifiers. in eds Mander, L. and Liu, H.W. comprehensive natural products II: Chemistry and Biology. Elsevier, London publishers, P 269-313

    Google Scholar 

  9. Jung, C. H., Kim, Y., Kim, M.S., Lee, S., and Yoo, S.H., [2016]. Establishment of efficient bioconversion, extraction and isolation processes for production of phyllodulcin, a potential high intensity sweetener from H – marcophylla. Phytochemical Anal. 27, 140 – 147.

    Google Scholar 

  10. Vander Wel, H. 1972 FEBS Lett. 21, 88-90

    Google Scholar 

  11. Zemanek, EC, and wasserman, B. P. 1995. Issues and advances in the use of tarnasgenic organism for the production of thaumatin the intensity sweet protein from Thauma cocous daniellii. Crit Rev. Food Sci. Neltr 35(5): 455-66.

    Google Scholar 

  12. Inglett, G.E and May, J.F. 1968. Econ. Bot. 22,326-330.

    Google Scholar 

  13. Van der wel H’and Loeve, K. 1972. Isolation and characterization of Thaumatin I and II, the sweet testing protein from T. daniellii Benth. Eur. J. Biochem. 31, 221-225; Greenly, L.W 2003. A Doctors guide to sweeteners. J Chiropractic Medicine. 2(21), 80-85.

    Google Scholar 

  14. European Patent Appl. 054, 330 to Unilever PLC (1982)

    Google Scholar 

  15. European Patent Appl. 0054, 331 to Uvilever PLC (1982)

    Google Scholar 

  16. Joseph, J. A., Akkermans, S., Nimmegeers, P and Van Impe, J. F. 2019. Bio-production of recombinant sweet protein thaumatin. Current state of art and perspectives. Front. Micrbiol/https://doc.org/103389/micb.2019. 00695 (http://docort/10.3389/fmie.2019.00695)

    Google Scholar 

  17. Masuda, T.K., Ohta N., Ojiro et al (2016). A hyper sweet protein. Removal of specific Negative charge at ASP 21 Enhance thaumatin sweetness. Sci. Rep. 6, 20255.

    Google Scholar 

  18. Masuda, T. and N. Kitabatak (2006) Development of biotechnological production of sweet proteins. J. Bio. Sci. Bioneg. 102(5), 375-389.

    Google Scholar 

  19. Daniell, S., Methits, K.H., Faus, I., Connerton I. (2000) Retolding the sweet tasting protein Thaumatin II from in soluble inclusion bodies synthesized in E. coli. Food Chem. 71, 105-110.

    Google Scholar 

  20. Szwacka M, Kryzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24: 173:185.

    Google Scholar 

  21. Doran, P.M. (2000). Foreign protein production in plant tissue cultures. Curr, Opin. Biotechnol. 11, 199-204.

    Google Scholar 

  22. Szwacka, M., Wojciech, Burza, Ranata Zawirska wojtasiak Michal Goslinsks et al (2012) Genetically modified crops expressing 358- Thaumatin II transgene: sensory properties and foods safety aspects. Comprehensive review in Food Sci. and Food Safety, 11(2), 1 – 39. (https://doi.org/10.11.11/J.1541-4337.2011.00178.X)

  23. Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R. (2004). Plant cell cultures for the production of recombinant of recombinant proteins. Nat. Biotechnol. 22, 1415 – 1422. doi: 10.1038/nbt1027.

    Google Scholar 

  24. Edenar L., and van der Wel, H. (1985). Microbial synthesis of the sweet-tasting protein thaumatin. Trends Biotechnol. 3, 61-64. doi: 10.1016/01677799(85) 00078-2.

    Google Scholar 

  25. Van der Wel, H., and Ledeboer, A. (1989). “The thaumatins,” in The Biochemistry of Plants – A Comprehensive Treatise, Vol. 15, ed. J. Press (New York, NY: Academic Press), 379.

    Google Scholar 

  26. FDA from 3667 “Nomad Bio Sci.”(D – 06120 Halle, Germany) GRN for thaumatin, for food flower modifier Oct. 16, 2017.

    Google Scholar 

  27. Asherie N, C Ginsberg, A greenbaum, S Blass and S Knofo. 2008. Effects of Protein Purity and precipitant Stereochemistry on the Crystallization of Thaumatin. Crystal Growth & Design 8(12): 4200-4207.

    Google Scholar 

  28. Edens, L., Heslinga, L., Klok, R., Ledeboer, A. M., Maat, J., Toonen, M. Y., et al. (1982). Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene 18, 1 – 12. doi: 10.1016/0378-1119(82)90050-6.

    Google Scholar 

  29. Lee, I. H., Weickmann, L. J., Koduri, R. K., Ghosh, D. P., Saito, K., Blair, L. C., et al. (1988). Expression of synthetic thaumatin genes in yeast. Biochemistry 27, 5101-5107. doi: 10.1021/bio0414a023.

    Google Scholar 

  30. Illingworth, C., Larson, G., and Hellekant, G. (1988). Secretion of the sweet-tasting plant protein thaumatin by Bacillus subtilis. Biotechnol. Lett. 10, 592. doi: 10.1007/bf01027135.

    Google Scholar 

  31. Illingworth, C., Larson, G., and Hellekant, G. (1989). Secretion of the sweet-tasting plant protein thaumatin by Streptomyces lividans. J. Ind. Microbiol. 4, 37-42. doi: 10.1007/bf01569691.

    Google Scholar 

  32. Faus, I., del Moral, C., Adroer, N., del Rio, J. L., Patino, C., Sisniega, H., et al. (1998). Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus niger var. awamori. Appl. Microbiol. Biotechnol. 49, 393-398. doi: 10.1007/s002530051188.

    Google Scholar 

  33. Masuda, T., Tamski, S., Kaneko, R., Wada, R., Fujita, Y., Mehta, A., et al. (2004). Cloning, expression and characterization of recombinant sweetprotein thaumatin II using the methylotrophic yeast Pichia pastoris. Biotechol. Bioeng. 85, 761-769. doi: 10.1002/bit.10786.

    Google Scholar 

  34. Ide, N., Kaneko, R., Wada, R., Mehta, A., Tamaki, S., and Tsuruta, T. (2007a). Cloning of the thaumatin 1 cDNA and characterization of recombinant thaumatin I secreted by Pichia pastoris. Biotechnol. Prog. 23, 1023-1030. doi: 10.1021/bp070072v.

    Google Scholar 

  35. Ide, N., Masujda, T., and Kitabatake, N. (2007b). Effects of pre-and pro – sequence of thauatin on the secretion by Pichia pastoris. Biochem. Biophys. Res. Commun. 363, 708-714. doi: 10.1016/j.bbrc.2007.09.021.

    Google Scholar 

  36. Ohta, K., Masuda, T., Ide, N., and Kitabatake, N. (2008). Critical molecular regions for elicitation of the sweetness of the sweet-tasting protein, thaumatin I. FEBS J. 275, 3644-3652. doi:10.1111/j.1742-4658.2008.06509.x

    Google Scholar 

  37. Masuda, T., Ide, N., Ohta, K., and Kitabatake, N. (2010). High-yield secretion of the recombinant sweet-tasting protein thaumatin I. Food Sci. Technol. Res. 16, 585 -592. doi: 10.3136/fstr.16.585.

    Google Scholar 

  38. Masuda, T., Mikami, B., and Tani, F. (2014). Atomic structure of recombinant thaumatin II revels flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie 106, 33-38. doi: 10.1016/j.biochi.2014.07.016.

    Google Scholar 

  39. Healey, R.D., Lebhar, H., Hornung, S., Thordarson, P., Marquis, C.P. (2017). An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem. 237, 825-832. doi: 10.1016/j.foodchem.2017.06.018.

    Google Scholar 

  40. Cereghino, G.P., Cerghino, J. L., Ilgen, C, and Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13, 329-332. doi: 10.1016/s0958-1669 (02) 00330-0.

    Google Scholar 

  41. Idiris, A., Tohda, H., Kumagai, H., and Takegawa, K. (2010). Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86, 403-417. doi: 10.1007/s00253-010-2447-0.

    Google Scholar 

  42. Toy, K. E., Liu, Z., Magnusson, Y., Petranovic, D., and Nielsen, J. (2014). Impact of protein uptake and degradation on recombinant protein secretion in yeast. Appl. Microbiol Biotechnol. 98, 7149-7159. doi: 10.1007/s00253-014-5783-7.

    Google Scholar 

  43. Papanikou, E. and Glick, B.S., (2009). The yeast golgiapparatus. Inside and mgsteries FEBS Lett. 583, 3746 – 3751.

    Google Scholar 

  44. Chiruvolu, V., Cregg, J. M., and Meagher, M. M. (1997). Recombinnat protein production in an alcohol oxidase – defective strain of Pichia pastoris in fed-batch fermentations. Enyme Microb. Technol. 21, 277-283. doi: 10.16/s0141-0229(97) 00042-2.

    Google Scholar 

  45. Izawa, M. and kuroda, M 2010 Miraculin: chemical Ecology comprehensive Natural Product II. Seince Direct ELSEVIER B. V. (c) 2019.

    Google Scholar 

  46. Sun HJ. Cui ML, MaB, Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620-626.

    Google Scholar 

  47. Twyman RM, Stoger E, Schillberg S, Christou P, Fisher R (2003) Molecular farming in plants: host systems and expression technology, Trends Biotechnol 21:570-578

    Google Scholar 

  48. Hirai, T., Fukukawa G., Kakuta, H; Fukuda N. and Ezura, H. (2010) Production of recombinant miraculin using transgenic tomato in closed cultivation system. J. Agric Food Chem.. 58:6096-6101.

    Google Scholar 

  49. Ezura, H and Hiwasa, K. T. 2018 mass production of the taste modifying protein miraculin in transgenic plants. Phytochemistry: Sweeteners PP167-184 springer link.

    Google Scholar 

  50. Theerasilp S, Kurihara Y (1988) Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem 263: 11536-11539.

    Google Scholar 

  51. Kota K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, Takane K, Ezura H, Mizoguchi T (2010) Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem 58:9505-9510

    Google Scholar 

  52. Hiwasa – Tanase K, Ezura H (2016) Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factory. Form plant Sci. 7: 539.

    Google Scholar 

  53. Wikipedia 2019. Steriol glyociside https://en.wikipeida.org/wike/steviol-glycoside.

    Google Scholar 

  54. Prakash, I, Markosyan, A and Bunder, C. 2014, Food 3, 162-175; doi: 10.3390/foods 3010162.

    Google Scholar 

  55. Nishiyamla, P. (1991) correlation between total carbohydrate concur and stevioside content in S rebaudina leaves. Arquivos de Biologia Technologia 34, 3-4.

    Google Scholar 

  56. Nishiyamla, P., Alvarez M and Vieira L. G. (1992) Quantitative analysis of steviod in the leaves of S. rebaudiana by near interred reflectance spectroscopy. J. Sci. Food Agri. 59, 277-281.

    Google Scholar 

  57. Nikolai, B, Oxana, R and Alexander N (2001). Pecularities of diterpenoid steviol glycoside production in vivo culture of S. rebaudiana Bertoni. Plant Sci. 161: 155-163.

    Google Scholar 

  58. Abou, Arab, A.E., Abou–Arab, A.Z., and Abu-Salem, M.F. 2010. Physico-chemical assessment of natural sweeteners stevioside produced from stevia plant. African J. Food Sci., 45, 269-281.

    Google Scholar 

  59. Kinghorn, A.D., Soejarto, D.D., Nanyakkara, et al, (1984) phytochemical Screeing procedure to sweet ent-kaurene glycosides in genus stevia. J. Nat. Prod. 47, 439 – 444.

    Google Scholar 

  60. Alvarez, M. and Kusumoto, I.T. 1987. Quantitative analysis of glycosidic sweetners from S. rebaudiana and their hydrolysis products by HPLC. Arquivos Biologiae Technologia 30, 337-348.

    Google Scholar 

  61. Nishiyama, P., Alvarez, M. and Vieira, L.G.E 1991 – Determination of Levels of stevioside and water-soluble carbohydrates in the leave of S. rebaudiana by near infrared reflectance Spectros copy” Arquivos de Biologiae Tecnologia, 34(2), 361-374.

    Google Scholar 

  62. Strauss, S. 1995. The perfect sweeteners. Technology Review, 98, 18-20

    Google Scholar 

  63. David, J. M. and Andrew, H. R. 2002 A new rural industry stevia – to replace imported chemical sweeteners RIRDC web publication No W02/022 RIRDC Project No UCQ-16A.P25.

    Google Scholar 

  64. DUBOIS, DE and Stephenson, R.A., (1985). Diterpenoid sweeteners synthesis and sensory evaluation of stevioside analogues with improved organoleptic properties. J. Med. Chem. 28, 93 – 98.

    Google Scholar 

  65. Kohda, H. et al 1976. New Sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry, 15(6), 981-983.

    Google Scholar 

  66. Brandles J.S.A.G.M. 1998 Stevia rebaudiana. Its agricultural biology and chemical properties (Reviewed). Canadian J. of plant Science, 78(4), 527-536.

    Google Scholar 

  67. Chen., T. et al 1996. Enrichment of separation of rebaudiosde-A from stevia glycosides by novel adsorbent with pyridyl group. Science in China – series B. Chemistry (Life Sci. & earth Sci.) 42(3), 277-282.

    Google Scholar 

  68. Liu, Y., Di, D., Bai, Q, Li, J., Chen, Z., Lou, S. and Ye, H. 2011. Prepartive separaction and purifiecation of Rebudioside A from steviol glycoside using mixed mode macroporous adsorption Resins. J. Agri. Food Chem 59(17), 9629-9639.

    Google Scholar 

  69. Agency Response letters GRAS Notice No GRN000473. Purified steviol glycosides with rebandiouside x (also known as Rebudioside M) as principal component. Available one line: http://www.fda.gov/Food/Ingredient-packing-labelino/GRAS/Noticeinventry/ucm382202 (accessed on 1 June 2013).

  70. Purkayastha, S. “ A Guide to Reb-A”, Food Product Design” (https://web.archive.org/web/20090326123009/http://www.foodproductesign.com/articles/guide-to-reb-a.html). Archived from the original (http://www.foodproductdesign.com/articles/guide-to-reb-a.html) on 26 March 2009. Retrieved 28 March 2009.

  71. Prakash, I. Dubois GE, Clos JF, Wikens KL, Fosdick LE (July 2008). “Development of reblana, naturai, non-caloric sweetener”. Food Chem. Toxicol. 46 Suppl 7(7): S75-82. doi: 10.1016/j.fct.2008.05.004 (http://doi.org/10.1016%2Fj.fct.2008.05.004). PMID 18554769 (https://www.ncbi.nlm.nih.gov/pubmed/18554769).

  72. Mike Hughlett (10 August 2013). “New Cargill sweetener aims at the giant worldwide cola market” (http://www.startribune.com/new-cargill-sweetener-aims-at-the-gaint-worldwide-cola-market/219040011). Star Tribune Media Company LLC, Minneapolis, MN. Archived (https://web.archive.org/web/20170306134458/http://www.startribune.com/new-cargill-sweetener-aims-at-the-giant-worldwide-cola-market/219040011/) from the original on 6 March 2017. Retrieved 5 March 2017.

  73. “FDA Approves 2 New Sweeteners” (https://www.nytimes.com/2008/12/18/business/18sweet.html). The New York Times. Associated Press. 17 December 2008. Retrieved 11 May 2009.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Commercial Production of Natural NSSS Sweeteners: A Concise Sketch. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_18

Download citation

Publish with us

Policies and ethics