Skip to main content

Molecular Approaches for the Improvement of Non Sacchariferous Super Sweet (NSSS) Plants

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 353 Accesses

Abstract

Only during last century, the use of zero/very low calorie natural non saccharide super sweet (NSSS) principles cropped up in the mind of human being after visualizing serious health disorders cause by most popular calorie rich sucrose and lethal effects of zero/very low calorie synthetic sweeteners like asulfame K, sucralose, saccharin etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwivedi, R.S. (1999) Unnurtured and untapped super sweet nonsacchariferuous plant species in India. Current Science, 76, (11, 10) 1454-1461

    Google Scholar 

  2. Dwivedi, R.S. and Singh, R.P. (2016) Non sacchariferous super sweet plants sp. to combat sugar and energy crisis, sugar health disorders and environmental warming Int, J. Sci. Techno and Society 21(1&2) 85-88.

    Google Scholar 

  3. Masuda, Tand Kita batakyN (2006) Development of biotechnological production of sweet proteins. J.Biosci, Bioeng. 102 (5), 375-389

    Google Scholar 

  4. Xiao, J.M. and Chang, MM (2017) Prospects of Molecular breeding in medicinal plants. PM ID 28822142. Zhongguo Zhong Yao za Zhi 42 (II), 2021-2031.

    Google Scholar 

  5. Liu, y, Wang, H, Ye Hc, Li, G.F. s(2005) Advances in plant isoprenoid biosynthesis pathway and its metabolic engineering. J. Intregr. Plant Bio. 47, 769-782.

    Google Scholar 

  6. Farwibe, 0.0, Ogunyale, 0.C, Agiboye, AA and Agboda, DA, (2014) Botanical and protein sweeteness. J. Adv Lab. Res, in Biology V (IV) 169-187

    Google Scholar 

  7. Bennett, R.D., Lieber, E.R. and Heftmann, E. (1967). Biosynthesis of steviol from Kaurene, Phytochemistry, 6,1107-1110,

    Google Scholar 

  8. Helliwell, C.A., Poolles A, Peacock, W.J. & Dennis E.S. (1999) Arabiodopsis ent-kaurene oxidase catalysed 3 steps of gibberellin biosynthesis. Plant Physiology-119, 507-510.

    Google Scholar 

  9. Roberts, S.C. (2007) Production and engineering of terpenoids in plant Cell Culture. Nat. Chem. Bid. 3:387-395

    Google Scholar 

  10. Gomez-Galera S, pelacho AM, Gene, Capell T, Christou P (2007) The genetic manipulation of medical and aromatic plants. Plant Cell Rep 26:1689-1715

    Google Scholar 

  11. Kumar, J. and Gupta, P.K. (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plants Biotech Rep. (2), 93-112 (DIO 10-1007/5 11816-008-0059-7).

    Google Scholar 

  12. Abe I, Takanhashi Y, Morita H, Noguchi H (2001) Benzalacetone synthase: a novel polyketide synthase that plays a crucial role in the biosynthesis of phenyl butanones in Rheum palmatum. Eur.J. Biochem : 268, 3354-3359.

    Google Scholar 

  13. Mustafa NR, Verpoorte R (2005) Chorismate derived C6C1 compounds in plants. Planta 222:1-5

    Google Scholar 

  14. Hermann KM (1995) The shikimate pathway as an entry point to aromatic secondary metabolism. Plant physiol 107:7-12

    Google Scholar 

  15. Nelson, D.L. and Cox, M.M. (2005) Principles of Biochemistry. 41 Madison Avenue New York.

    Google Scholar 

  16. Darpo, B., Bijornsson. TD, Brathwaite, WA., Crincoli, CM., Eapen, AK;, Fisher, GL., Kowey, PR., Miller, MP., Nikiforov, Al., Rihner, MO., Zhou, M., 2016. Sweet flavoured isomer of a component first identified in root bark of selrochitin ilicifolius plant. Food Chem Toxicol. 91:217-24. Doi: 10.1016.

    Google Scholar 

  17. Hlcks, P.M.; McFarlan, S.C.; US 8,440,434 B2, (2013).

    Google Scholar 

  18. Witty, M. (1990). Prepothaumatin II is processed to biological activity in Salonum tuberosum. Biotechnology Lett. 12, 131-136

    Google Scholar 

  19. Higginbothem, J.D., R.C. Gelardi and L. O. Nabors (1986). Alternative sweeteners. New York: M. Dekker, Inc. ISBN.

    Google Scholar 

  20. Kurihara, Y and Nirasawa, S. (1997) Structure and activities of sweetness inducing substances (Miraculin, curculin, strogin) and heat stable sweet protein. Food and Food ingredients Journal of Japan 67-74.

    Google Scholar 

  21. Suzuki, M., Kurimoto, E., Nirasawa, S., Masuda, Y., Hori, K., Kurihara, Y., Shimba, N., Kawai, M., Suzuki, E., and Kato, K., (2004) Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Letters, 573 (1-3), 135-138.

    Google Scholar 

  22. Assadi-Porter, F.M., Patry, S. Na Markley, J.L. (2008) Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E.coli. Protein Expr Purif., 58, 263-268.

    Google Scholar 

  23. Mansouri, F, Modarressi, MH. Abolhassani, M. and Parivar, K. (2011) Synthesis and production of sweet tasting protein in E. coli and purification by Amylose Resin. J. of Sci. Islamic Republic Iran : 22[2], 105-110.

    Google Scholar 

  24. Pernarrubia, L. Kim, R, Giovanni, J;, Kim, S.H., and Fischer, R.L. (1992) Bio-Technology 10(5), 561-564.

    Google Scholar 

  25. Reddy, C.S., Vijyyalakshmi, M, kaul, T Islam, T, Reddy, M.K (2105) Improving flavor and quality of tomato by expression of synthetic give encoding sweet protein monollin. Mol. Biotechnol. 57(5), 448-453.

    Google Scholar 

  26. Xiong, L.W. and Sun, S. (1996) Molecular cloning and transgenic expression of the sweet protein mabinlin in potato tubers. Plant physiology, 111, 147.

    Google Scholar 

  27. GU, W. Xia, Yao, J., Fu, s., Guo, J. and Hu, w. (2015) Recombinant expression of sweet plant protein mobinlin II in Escherichia coli and food. Grade Lactococcus lactis worlds J. Microbist Biotechnol 31 (4), 557-567.

    Google Scholar 

  28. Brandle, J.E. and Tehlmer, P.G. (2007) Steviol glycoside biosynthesis. Phytochemistry 68, 1855-1863.

    Google Scholar 

  29. Seki, H., Sawai, S., Ohyama, K., et al (2011). Triterpene Functional Genomics in Licorice for Identification of CYP72A 154 Involved in the Biosynthesis of Glycyrrhizin. The Plant Cell, Vol. 23:4112-4123

    Google Scholar 

  30. Takeuchi, N., Murase, M., Ochi, K., and Tobinaga, S. (1980). Biogenetic synthesis of (_+)-phyllodulcin, a sweet principle of Hydrangea serrata Seringe var. thunbergii Sugimoto. (Studies on the β-carbonyl compounds connected with the β-polyketides. V.I), Chem. Pharm. Bull., 28,3613.

    Google Scholar 

  31. Ramacciptti, A, Fiaschi, R., and Napolitano, E., (1996). Highly Enantioselective Synthesis of Natural Phylloduclin J. Org. Chem, 61(16). Pp 5371-5374.

    Google Scholar 

  32. Attia, M, kim, SU, RO, DK (2012) Molecular cloning and characterization of (+) epi-α-bisabolol synthase, catalyzing the first step in biosynthesis of natural sweetener hernandulcin in Lippia dulcis. Archo Biochem. Biophysicr 527, 37-34.

    Google Scholar 

  33. Tiwari, P., Misra B.N. and Sharma, N.S. (2014) Phytochemical and Phormatological properties of G. sylvestre, an important medicinal plant. Biomed Res. Metemalional 2014, article ID 83025; 18 pages http//doi.org/10.1155/2014/830285

    Google Scholar 

  34. Theeraslip S. and Kurihara Y (1988). “Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit” J. Biol. Chem. 263 (23): 11536-9. PMID 3403544

    Google Scholar 

  35. Hirai, T., Kurokawa, N., Dulita, N., Hiwasa, Tanase, K., Kota, K., Ezura, H (2011). The HSP terminator of Arabidopsiss thaliana induce extremely high level accumulation of miraculin protein in transgenic format. J. Agric Food Chem. 59:9942-9949.

    Google Scholar 

  36. Itkin, M. Rikanati, R.D., Cohen, S. et al (2016). The biosynthetic pathway of nonsugar high intensity sweetener mongroside V from Siraitia grosvemoril. Proc. National Academy of Science. 113(47), E7619-7628.

    Google Scholar 

  37. Dia, L., Liu, C., Zhu, Y., Zhang, J., Men, Y., Zeng, Y., Sun, Y., (2015). Functional characterization of cucubetadienol synthese and triterpine glycosyltransferase involved in biosynthesis of mogrosides from siraitia grosvenorii. Plant and cell physiology 56(6), 1172-1182.

    Google Scholar 

  38. Amino, Y., Kawahara, S., Mori, K., Hirasawa, K., Sakata, H., Kashiwagi, T., (2016). Preparation and Characterization of Four Stereoisomers of Monatin. Chemical and Pharmaceutical Bulletin, 64 (8), 1161-1171.

    Google Scholar 

  39. Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding, Plant Breed 121:281-291

    Google Scholar 

  40. MCCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, havey MJ (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958-967

    Google Scholar 

  41. Keurentjes JJB, Fu J, Rice de Vos CH, Lommen a, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) Thegenetics of plant metabolism. Nat Genet 38:842-849

    Google Scholar 

  42. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447-454

    Google Scholar 

  43. Blum E, Maxourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran K (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in capsicum, Theor Appl Genet 108:79-86

    Google Scholar 

  44. Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001 a) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylis glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 15-:359-370

    Google Scholar 

  45. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001 b) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811-825

    Google Scholar 

  46. Kliebenstein DJ, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325-332

    Google Scholar 

  47. Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (vitis vinifera L.). Mol. Breed 18:109-125

    Google Scholar 

  48. Goossens A, Rischer H (2007) Implementation of functional genomics for gene discovery in alkaloid producing plants. Phytochem Rev 6:35-49

    Google Scholar 

  49. Zeigler J, Diaz-Chavez ML, Kramell R, Ammer C, Kutchan TM (2005) Comparative microarray analysis of morphine containing identifies an O-methyltrasferase involved in benzylisoquinoline biosynthesis. Planta 222:458-471

    Google Scholar 

  50. Oksman-Caldentey K-M, Inze D, Oresic M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101:9949-9950

    Article  CAS  Google Scholar 

  51. Muellar and Woffenbarger (1999). AFLP procedure-cited in (Ref : 50) : Rischer. H et al (2007) Molecular Pl. Breed. 5:169

    Google Scholar 

  52. Rischer H, Goossens A, Oresic M, Inze D, Oksman-Caldentey KM (2007) Gene discovery and characterization from non-sequenced medicinal plants. Mol Plant Breed 5:169

    Google Scholar 

  53. Goossens a, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, sutter VD, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M, Inze D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary etabolism in plant cells. Proc Natl Acad Sci USA 100:8595-8600

    Google Scholar 

  54. Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26:2129-2136

    Google Scholar 

  55. Liu DH, Jin HB, Chen YH, Cui LJ, Ren WW, Gong YF, Tang KX (2007) Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. J Integr Plant Biol 49:961-974

    Google Scholar 

  56. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126-4133

    Google Scholar 

  57. Sun, Hyeon-Jin; Hiroshi Kataoka; Megumu Yano; Hiroshi Ezura (2007). “Genetially stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants”. Plant Biotechnology Journal. 5(6): 768-777. ISSN 1467-7644.

    Google Scholar 

  58. Sun, H.J. Cui ML, Ma B, Ezura H (January 2006). “Functional expression of the taste-modifying protein, miraculin transgenic lettuce”. FEBS Lett. 580(2):620-6. PMID 164063368

    Google Scholar 

  59. Li, L., Cheng, H., Gai, J., and Yu, D. (2007). Genome-wide identification and characterization of putative cytochrome p450 genes in the mode legume Medicago truncatula. Planta 226: 109-123.

    Google Scholar 

  60. Hayashi, Ho, Huang P., Kinokosyan, A et al (2001) Cloning and characterization oba CDNA encoding soyasaponin biosynthesis inlicoris Biol. Pharm. Bull-24;912-916.

    Google Scholar 

  61. Totte, N., Charon, L., Rohmer, M. compernolle, F., Babeeuf I, &geun, J.M.C. (2000) Biosynthesis of diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana pathway. Tetrahedegon Lett. 4, 6407-6410

    Google Scholar 

  62. S.zwacka, M., burza, W., Zawirska-Wajtasiak, et al (2012). Genetically modified crop expression 35S-Thaumatin II, Trasngene. Sensory Properties and food safety aspects. Comp. Rev. Food Sci. and Food Safety 11(2), 174-176.

    Google Scholar 

  63. Liscombe DK, Macleod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzyliso-quinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374-1393

    Google Scholar 

  64. Ostergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682-696

    Google Scholar 

  65. Vepoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323-343

    Google Scholar 

  66. Somerville C, Somerville S (1999) Plant functional genomics. Science 285:380-383

    Google Scholar 

  67. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology, Curr Sci 87:159-165

    Google Scholar 

  68. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plant species into cultivation: opportunities ans challenges for biotechnology. Trends Biotechnol 23:180-185

    Google Scholar 

  69. Khanuja SPS, Shasany AK, Pawar A, Lal RK, Darohar MP, Naqvi AA, Rajkumar S, Sundaresan v, Lal N, Kumar S (2005a) Essential oil constituents and RAPD markers to establish species relationships in Cymbogon Sperg. (Poaceae). Biochem Syst Ecol 33:171-186

    Google Scholar 

  70. Shasany AK, Shukla AK, Khanuja SPS (2007) Medicinal and aromatic plants. In:Kole (ed) Genome mapping and molecular breeding in plants. Technical crops, vol 6. Springer, Berlin, pp 175-196

    Google Scholar 

  71. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of genome in higher plants. Funct Integr Genomics 4:139-162

    Google Scholar 

  72. McCallum J, Pither-Joyce M, Shaw M, Kenel F, Davis S, Butler R, ScheVer J, Jakse J, Havey MJ (2007) Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency. Theor Appl Genet 114:815-822

    Google Scholar 

  73. Oraguzie NC, Rikkerink EHA, Gardiner SE, Silva HND (eds) (2007) Association mapping in plants. Springer, Berlin

    Google Scholar 

  74. Dronne S, Colson M, Moja S, Faure O (1999) Plant regeneration and transient GUS expression in a rance of lavadin (lavandula intermedia Emeric ex Loiseleur cultivars. Plant Cell Tissue Organ Cult 55:193-198

    Google Scholar 

  75. Fu CX, Xu YJ, Zhao DX, Ma FS (2006) A comparison between hairy root cultures and wild plants of Saussurea involucrate in phenylpropanoids production. Plant Cell Rep 24:750-754

    Google Scholar 

  76. Edens, L., Hestinga L., Klock, R; Lediboer, AM, Maot, J., Toonen, M.Y., Visser, Ch., Verrips, C.T. (1982). Cloning of CDNA encoding, the sweet tasting plant prtein thaumatin and its expression in E. Coli. Gene 18(1), 1-12.

    Google Scholar 

  77. Larkin PJ, Miller JAC, Allen RS Chitty JA, Gerlach WL, Kutchan SFTM, Fist AJ (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum, Plant Biotechnol J 5:26-7

    Google Scholar 

  78. Ishak, N.A., Ismail, M., Hamid, M., Ahmad, Z. and Ghafar, S.A.A (2013) antidiabetic and Hypolipidemic Activities of Curculigo latifolia Furit: Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats. Complementary and Alternative Medicine. Article ID 601838, 12 pages (https://doi.org/10.1155/2013/601838)

  79. Edens, L., Bom, L., Ledeboer, AM, Maat, J., Tooner, M.Y., Visser, C. et al (1984). Synthesis and processing of plant protein thaumatin in yeast. Cell 37, 620-30.

    Google Scholar 

  80. Assadi-Porter, F.M., Aceti, D.J. and Markley, J.L. (2000)Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys., 376(2),259-265.

    Google Scholar 

  81. Turner, J. (2016) “Scientist make a sweet discovery:lab synthesized brazzein” (http.//www.foodive.com/news/scientist-make-a-sweetprotein-discovery-labysnthesized-brazzein/425710). Food Dive.

    Google Scholar 

  82. Halliday, J. (2008). “Natural sweetener race hots up with Nutrinova break-through”. www.foodnavigator.com.

    Google Scholar 

  83. Kohmura, M., toshim, M, Nio, N, Suzuki, and ariyoshi, Y (2002) structure-taste relationship of the sweet protein Monellin. Pure Appl, Chem. 74(7), 1235-1242.

    Google Scholar 

  84. Lee. S.Y., Lee, H.J. Change, J.M. Cho, J.W. jung and W. Lee (1999). “Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculation. Biochemistry, 38:2340-2346.”

    Google Scholar 

  85. Kohmura, M., Nio, N., and Ariyoshi, Y., (1991) “Solid-phase synthesis of crystalline monellin, a sweet protein,” Agricultural and Biological Chemistry, vol. 55, no. 2, pp. 539-545.

    Google Scholar 

  86. Guan RJ, Zheng JM, HuZ, Wang DC (2000). “Crystallization and preliminary X-ray analysis of the thermostable sweet protein mabinlin II”. Acta Crystallogr D. 56 (pt 7): 918-9. PMID 10930844

    Google Scholar 

  87. Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (April 2009). “Functional expression of miracullin modifying protein in Escherichia coli” J. Biochem, 145 (4): 445-50

    Google Scholar 

  88. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synhase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellins pathways. Plant J 8:693-701

    Google Scholar 

  89. Kovacs K, Zhang L, Linforth RST, Whittaker B, Hayes CJ, Fray RG (2007) redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4 (5),11(12)-diene] in transgenic tomato fruit. Transgenic Res 16:121-126

    Google Scholar 

  90. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature biotechnol 24:1441-1447

    Google Scholar 

  91. Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolic pathways for production of fine chemicals. Biotechnol Lett 1:467-479

    Google Scholar 

  92. Li L, Eck JV (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581-585

    Google Scholar 

  93. Allen RS, Millgate AM, Chitty JA, Thistleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the non-narcotic alkaloid reticuline in Opium poppy. Nat Biotechnol 22:1559-1566. factor gene VlmybA2 in transgenic tobacco and Arabidopsis. Plant Biotechnol Rep 1:11-18

    Google Scholar 

  94. Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 1:363-375

    Google Scholar 

  95. Ye XD, Al-Babili S, Kloti A, Zhang j, Lucca P, beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303-305

    Google Scholar 

  96. Paine JA, Shipton CA, Chaggar S, Howells RM, kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone SL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482-487

    Google Scholar 

  97. Memelink J, Mejke FLH, van der Fits L, Kijne JW (2000) Transcriptional regulators to modify secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht. Pp 111-125

    Google Scholar 

  98. Verhoeyen M, Muir S, Collins G, Bovy A, de Vos R (2000) Increasing flavonoid levels in tomatoes by means of metabolic engineering. In: Abstract; 10th symposium ALW-discussion group secondary metabolism in plant and plant cell

    Google Scholar 

  99. Geekiyanage S, Takase T, Ogura Y, Kiyosue T (2007) Anthocyanin production by overexpression of grape transcription factor gene Vlmyba2 in transgenic tobacco and Arabidopsis. Plant Biotech-no Rep 1:11-18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Molecular Approaches for the Improvement of Non Sacchariferous Super Sweet (NSSS) Plants. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_17

Download citation

Publish with us

Policies and ethics