Skip to main content

Vegetal Taste Modifiers

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 373 Accesses

Abstract

There are some vegetal principles which modify the taste to sour, cause reduction in sweetness, induction of sweetness and flavor in the non sweet food. Few among those, induce sweetness in drinking water i.e. water and beverages taste sweet during drinking after their consumption. These chemicals are important because they substitute sugre (calorie rich) and zero calorie super sweet principle as they are calorie free and help in providing different tastes and rectifying different ailments e. g. diabetes and cardiovascular, kidney and liver disorders, high calories sugar consumption is restricted. Some of such natural organic acid like gymnemic acid not only reduce sweetness in mouth but also interact with sugar in intestine and reduce their calories. These taste modifiers are protein, triterpenoid, polysaccharides, polyphenol, ester of quinic acid etc. in nature. They are found in different plants as mentioned in Table 15.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panizzi, L., Scrapti, Maria. L.; (1954). Constitution of cynarin, the active principle of artichoke, Nature 174(4440), 1062-3.

    Google Scholar 

  2. Feifer, J. (2011), A matter of taste. Men’s Health 26(4), 140.

    Google Scholar 

  3. Moglia, M, Lanteri, S, Comino. C, Aquadro, A. devos, R, and Beekwidlder, J. (2008). Stress induced biosynthesis of dicaffeol quinic acid in glob artichoke J. Agri, Food. Chem. 56(18), 8641-9.

    Google Scholar 

  4. Cesar G. Fraga. Plant Phenolics and Human Health – Biochemistry, Nutrition and Pharmacology. Wiley P.9.

    Google Scholar 

  5. Ceccarelli N., Curadi M., Picciarelli P., Martelloni L., Sbrana C., Giovannetti M. (2019) “Globe artichoke as a functional food” Mediterranca Journal of Nutrition and Metabolism 3 (3), 197–201.

    Google Scholar 

  6. Dwivedi, R. S. (1999) unnurtured and untapped super sweet nonsacchariferous plant species in India. Current Sci. 76(11), 1454-1461.

    Google Scholar 

  7. Medscape. Artichoke, https://referencc.medscape.com/drug/cynara-scolymus-cynarin.)

  8. Boerjan Wout, Ralph. J. and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. plant Biol. 54, 519-46.

    Google Scholar 

  9. Alassadi, E.A.S. (2017) Evaluation of invitro antibiotic and antioxidant activités of cynarin denary and chlorogenic acid extracted form artichoke plant cultivatied in trak. Int. J. Pharm. Sci. Rev. Resarticle No. 37, 187–191.

    Google Scholar 

  10. Gebrardt R. (1998) inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by Artichoke (Cynara scolymus L.) extracts. J. Pharmaol Exp. Ther. 286(3), 1122-1128.

    Google Scholar 

  11. Wagner T, Fintelmann V. (1999) Pharmacological property and therapeutic profile of Artichoke (Cynara scolymus L.). Wien Med Wochenschr. 149(8-10), 241-7.

    Google Scholar 

  12. Ning Xia, Andrea Pautz, Ursula Wollscheid, Gisela Reifenberg, Ulrich Forstermann and Huige Li. (2014) Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells. Molecules. 19, 3654-3668.

    Google Scholar 

  13. Fratianni, F., Di Luccia, A., Coppola, R. and Nazzaro F. (2007) Mutagenic and Antimutagenic properties of Aqueous and Ethanolic Extracts from Fresh and Irradiated Tuber Aestivum Black Truffle: A Preliminar Study. Food Chemistry. 102. 417-474.

    Google Scholar 

  14. Nazzaro F. Fratianni F. and Coppola R. (2013) Quorum Sensing and Phytochemicals. International Journal of Molecular Sciences. 14, 12607-12619.

    Google Scholar 

  15. Lattanzio V., Kroon P.A., Linsalata V. and Cardinali A. (2009) Globe Artichoke: A Functional Food and Source of Nutraceutical Ingredients. Jouranl of Functional Foods. 1, 131-144.

    Google Scholar 

  16. Halliwell B. (2008) Are polyphenols anti-oxidants or pro oxidants. Arch. Biochem. Biophys. 476, 2008,107-112.

    Google Scholar 

  17. Rottenberg, A., and D. Zohary, (1996): “The wild ancestry of the cultivated artichoke.”Genet. Res. Crop Evol. 43, 53-58.

    Google Scholar 

  18. Vartavan, C. (de) and Asensi Amoros, V. (1997) Codex of Ancient Egyptian Plant Remains. London. Triade Exploration. Page 91.

    Google Scholar 

  19. “Artichoke” at American Heritage Dictionary (http://thefreedictionarv.com/artichoke)

  20. Zuckermann, G. (2003) Language contact and Lexical Enrichment in Israeil Hebrew.

    Google Scholar 

  21. “Artichokes Cynerin History” (https://whatscookinnamcrica.net/Historv/ActichokeHistorv.htm). /What’s Cooking America. Retrieved 2019–02-08.

  22. “Major Food and Agricultural Commodiites and Producers – Countries By Commodity” (https://web.archive.org/web/20130114151638/http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor) (FAD) on 2013-01-14. Retrived Feb 20, 2017.

  23. Scaglione, Davide; Sebastian; R.C.W, Alberto; A. Lutz; F., Ezio; P., Christopher; B., Matteo; T., Rosairo; M., Antonino; L.M., Giovanni; M., Primetta; F. Luigi; C., Loren; R., Richard; M., Sergio; L., (2016). “The genome sequence of the out breeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 pogeny” (https://wAvw.ncbi.nlm.nih.gov/pmc/articles/PMC4726258). Scientific Reports. 6(1): 19427.

  24. “Home Page” (http://www.artichokegenome.unito.it/). Globe Aritchoke Genome Database. Retrieved 16 May 2018.

  25. Peters Seed and Research (http://www.psrseed.com/gardensce_nothernstarartichoke.html) Archived December 7,2008, at the Wayback Machine.

  26. Anonymous (1948-1976) wealth of India. Rowmaterials Vol. 1-X. council of scientific and Industrial Research New Delhi. India.

    Google Scholar 

  27. “Alcachofa” (http://nunhems.es/www/nunhemsinternet.nsf/id/ES_ES_Artichoke). Nunhems.es. Retrieved 10 January 2019.

  28. Wider B, Pittler MH, Thompson-Coon J, Ernst E (2013).” Artichoke leaf extract for treating hypercholesterolaemia”. Cochrane Database (Systematic review). 3 (3): CD003335.

    Google Scholar 

  29. Proprietatile ceaiului de anghinare. www.frunza-verde.ro/ceai-de-anghinare. (http://www.frunza-verde.ro/ceaide-anghinare).

  30. “The Artiehoke in Tinos” (http://www.tinos.biz/ang2/). www.tinos.biz. Retrieved 2017-01-02.

  31. “The Artichoke in Tinos” (http://www.greekfood.recipe.com/artichokes-a-polita/). Greek-recipe.com.Archived (https://web.arehivc.org/web/20101215033144/http://greek-recipe.com/modules.php?name=News&file=article52) from the original on 15 December 2010. Retrieved 2011-01-17.

  32. CID 10051937 (https://pubchem.nchi.nlm.gov/compound/10051937) from PubChem

  33. Sheng, Huarming and Sun (2011). “Synthesis, biology and clinical significance of pentacyclic triterpenes: A multi-target approach to prevention and treatment of metabolic and vascular diseases”. Natural Product Reports. 28(3): 543.

    Google Scholar 

  34. Kinghorn, AD and Compadre CM (1991). LO’Brien Nabors, ed. Less common high-potency sweeteners. Alternative Sweeteners (2nd ed.). New York: Marcel Dekker. ISBN 0-8247-8475-8.

    Google Scholar 

  35. Armando, Z, Ramanucci, V., Gravente, R., Marina. CD, Glovanni, D.F. 2014. History of Gymnemic acid, a molecule that does not exist. Natural product communication, 9(10), 1429-1435.

    Google Scholar 

  36. Kurihara, Yoshie (1992). “Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins”. Critical Reviews in Food Science and Nutrition. 32(3): 231-52.

    Google Scholar 

  37. Liu, H.-M. Kiuchi, F. and Tsuda, Y. (1992) “Isolation and structure elucidation of gymnemic acids, antisweet principles of Gymnema sylvestre R. Br.,” Chemical and Pharmaceutical Bulletin, 40, (6), 1366-1375.

    Google Scholar 

  38. Yoshikawa, M. Murakami, T. Kadoya M. et al., (1997) “Medicinal food stuffs. IX. The inhibitors of glucose absorption from the leaves of Gymnema sylvestre R. Br. (Asclepiadaceae): structures of gymnemosides A and B”, Chemical and Pharmaceutical Bulletin, 45, (10), 1671-1676.

    Google Scholar 

  39. Imoto, T. Miyasaka, R. Ishima, R. and Akasaka, K. (1991) “A novel peptide isolated from the leaves of Gymnema sylvestre – I. Characterization and its suppressive effect on the neural responses to sweet taste stimuli in the rat,” Comparative Biochemistry and Physiology, 100, (2), 309-314.

    Google Scholar 

  40. Saltu, N. P. Mahato, S. B. Sarkar, S. K. and Poddar, G. (1996) “Triterpenoid saponins from Gymnema sylvestre,” Phytochemisty, 41, (4), 1181-1185.

    Google Scholar 

  41. Liu, X. Ye, W. Yu, B. Zhao, S. Wu, H. and Che, C. (2004) “Two new flavonol gylcosides from Gymnema sylvestre and Euphorbia ebnaceteolata,” Carbohydrate Research, 339, (4), 891-895.

    Google Scholar 

  42. Potawale, S.E., Shinde, V.M., Anandi, L. Borade, S., Dhalawat, H. and Deshmukh, R.S., (2008) “Gymnema sylvestre: a comprehensive review,” Pharmacologyonline, vol. 2, pp. 144-157.

    Google Scholar 

  43. Sinsheimer, J.E., Rao, G.S., and McIhenny, H.M. (1970) “Constittuents from Gymnema sylvestre leaves. V: isolation and preliminary characterization of the gymnemic acids.” Journal of Pharmaceutical Science, 59, (5), 622-628.

    Google Scholar 

  44. Zhen, H.S., Zhu, X.Y., Lu, R.-M., Liang, J. Qiu, Q. and Q.-M., Meng, (2008) “Research on chemical constituents from stem of Gymnema sylvestri,” Journal of Chinese Medicinal Materials, 31, (8), 1154-1156.

    Google Scholar 

  45. Tiwari, P., Misra, B.N. and Sharma, N.S. (2014) Phytochemical and phormacological properties of G. sylevestre, An important Medicinal plant Biomed Res. International 2014, article ID 83025.18 pages Htp//d.doi.org./10.1155/2014/830285.

    Google Scholar 

  46. Porchezhan, E. and Dobryal, R.M. (2003). An overview on advances of G. sylvestre. Chemsitry, Pharmacology and Patents. Pharmazie 58, 5–12.

    Google Scholar 

  47. Sharma, D; Sawate, A.R., Patil, B.M. and Kshirsagar. R.B. 2017. Studies on physic-chemical characteristics of Gymnema sylvestre (leaf, powder and extract). J. pharmacology & physiochemistry 6(5), 250-255.

    Google Scholar 

  48. Ota. M.; Shimizu. Y.; Tonosaki. K.; Ariyoshi, Y.; (1998) Biopolymers, 46, 65.

    Google Scholar 

  49. Nagaoka, T.; Hane, H.; Yamashita, H.; Kensho, I.; (1990) seito Gijutsu Kenkyu Kaishi 38, 61.

    Google Scholar 

  50. “Gurmar”(http://www.flowersofindia.net/catalog/slides/Gurmar.htm). Flowers of India. Retrieved 24 October 2016.

  51. Wikipeida source. “Charak Somhita” by charak between 100 BCE and 200CH, in “Ayurvedic” and Indian system of medicin.

    Google Scholar 

  52. Gent JF, Hettinger TP, Frank ME, Marks LE, (1999) Taste contusions following gymnemic acid rinse. Chemical Senses 24(4): 393-403.

    Google Scholar 

  53. Sahu N, Mahato SB, Sarkar SK, Poddar G, (1996) Triterpenoid saponis from Gymnema Sylvestre. Phytochemistry. 41:1181-1185.

    Google Scholar 

  54. Persaud SJ, Al-Majed H, Raman A, Jones PM. (1999) Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. Journal of Endocrinology. 163: 207-212.

    Google Scholar 

  55. Okabayashi Y, Tani S, Fujisawa T, Koide M, (1990) Hasegawa on glucose homeostasis in rats. Diabetes Research and Clinical Practice, 9:143-148.

    Google Scholar 

  56. Teraswas H, Miyoshi M. Imoto T. (1994) Effects of long-term administration of Gymnema sylvestre water-extract on variations of body weight, plasma glucose, serum triglyceride, total cholesterol and insulin in Wistar fatty rats. Yonago Acta Medica, 37: 117-127.

    Google Scholar 

  57. Preuss HG, Bagchi D, Bagchi M, Rao CV, Dey DK, Satyanarayana S et al. (2004) Effects of a natural extract of (-)- hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes, Obesity and Metabolism. 6(3): 171-180.

    Google Scholar 

  58. Gaur, S; Gulkari, V., Durogkar, N. and Patil, A. (2007) Systematic review. Pharmagnosy, Pheytochemistry, Pharmacology and clinical application of G. sylvestre R. Br. Pharmacognosy Review: 1,338-343.

    Google Scholar 

  59. Yamamoto, T.; (1991) Physiol. Behav. 49, 919.

    Google Scholar 

  60. Oakley, B.; (1985) Chem. Senses 10. 469.

    Google Scholar 

  61. Kennedy, L. M.; Struckow, B.; Waller, F. J.; (1975) Physiol. Behav, 14, 755.

    Google Scholar 

  62. Miyasaka, A.; Imoto, T.; (1995) Brain Res. 676, 63.

    Google Scholar 

  63. Ota. M.: Shimizu, Y.; Tonosaki. K.; Ariyoshi, Y.; (1998) Biopolymers 45,231.

    Google Scholar 

  64. Kurihara Y (1969). “Antisweet activity of gymnemic acid A1 and its derivatives”. Life Sciences. 8(9): 537-43. doi. https://doi.org/10.1016/0024-3205(69)90449-4. (https://doi.org.10.1016%2F0024-3205%2869%2990449-4). PMID 5791706 (https://www.ncbi.nlm.nih.goy/pubmed/5791706).

  65. Meiselman HL, Halperin BP (1970). “Human judgments of Gymnema sylvestre and sucrose mixtures”. Physiology & Behavior. 5(8): 945-8. doi: https://doi.org/10.1016/0031-9384(70)90187-3 (https://doi.org/10.1016%2F0031-9384%2870%2990187-3). PMID 5522511 (https://www.ncbi.nlm.nih.gov/pubmed/552511).

  66. US application 2004071801 (https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US20040711801). Edell D, Handel R, “Herbal formulation of Gymnema sylvestre as a dietary aid”, published 15 April 2004.

  67. Frank RA, Mize SJ. Kennedy LM, de los Santos HC, Green SJ (1992-10-01). “The effect of Gymnema sylvestre extracts on the sweetness of eight sweetneers” (https://academic.oup.com/chemise/article-abstract/17/5/461//275889?redirectedFrom=fulltext). Chemcial Senses. 17(5): 461-479. doi:https://doi.org/10.1093/chemse/17.5.461 (https://doi.org/10.1093%2Fchemse%2F17.5.461).

  68. Chattopadhyay, R, R.; (1998) Gen. Pharmacol. 31,495.

    Google Scholar 

  69. Yoshioka, S.; Takeuchi, T.; Imoto. T.; Kasagi. T.; Hiji. Y.; (1985) Igaku no Ayumi 135, 241.

    Google Scholar 

  70. Shimizu. K.; Iino. A.; Nakajima, J.; Tanaka. K.; Nakajyo, S.: Urakawa. N. Atsuchi. M.; Wada, T.; Yamashita. C.; (1997) J. Vet. Med. Sei. 59, 245.

    Google Scholar 

  71. Murakami, N.; Murakami, T.; Kadoya, M.; Matsuda, H.; Yamahara, J.; Yoshikawa, M.; (1996) Chem. Pharm. Bull. 44, 469.

    Google Scholar 

  72. Miyatake, K.; S.; Fujimoto, T.; Kensho, G.; Upadhya, S. P.: Kirihata, M.; Ichimoto. I.; Nakano. Y.; (1993) Biosci. Bitechnol. Biochem. 57, 2184.

    Google Scholar 

  73. Sarkar, S. K.; (1995) Ptential hypoglycemic and antihypeglycemic triterpenoid asponins from gymnema sylvestre. Book of Abstracts. 210th ACS National Meeting, Chicago, IL. 1995, Aug 20–24, (Pt.1), AGFD-239: Published by American Chemical Society, Washington, D.C.

    Google Scholar 

  74. Nakamura, Y.; Tsumura. Y.; Tsumura, Y.; Tonogai, Y.; Shibata. T.; (1996) J Nutr. 129 1214.

    Google Scholar 

  75. Wang, L. F.; Luo, H.; Miyoshi, M.; Imoto, T.; Hiji, Y. Saskai. T. (1998) Can. J. Physiol. Pharamacol. 76, 1017.

    Google Scholar 

  76. Yackzan, K. S.; Clark, C. H.; (1971) J. Ala Acad. Sei. 38, 32.

    Google Scholar 

  77. Luo, H.; (1999) Yonago Igaku Zasshi 50,22.

    Google Scholar 

  78. Sawabe, Y.; Nakagomi, K.; Iwagami, S.; Suzuki, S.; NAKAZAWA, H.; (1992) Biochim. Biophys. Acta 1137, 274.

    Google Scholar 

  79. Kini, R. M.; Gowda, T. V.; (1982) Indian J. Biochem. Biophys. 19, 342.

    Google Scholar 

  80. Kini, R. M.; Gowda, T. V.; (1982) Indian J. Biochem. Biophys. 19, 152.

    Google Scholar 

  81. Ito, N.; Jpn. Kokai Tokkyo Koho 3 (1996). Application: JP 94-191291 19940722.

    Google Scholar 

  82. Hichi. Y.; Jpn. Kokai Tokkyo Koho 8 (1994). Application: JP 93-137882 19930608.

    Google Scholar 

  83. Alviar, B.: Connor, L. M.; Dixon, A. A.; Magee, M. M.; Maly, E. R.; Mclauchlan, S. M.; PCT Int Appl. 24 (2000). Application: WO 99-US20116 199990901.

    Google Scholar 

  84. Dhaliwal, K. S.; US 5 (1990). Applicaton: US 97-924512 19970905

    Google Scholar 

  85. Kosbab, J. V.; PC L Int. Appl. 62 (1998). Application: WO 98-US2005 19980204

    Google Scholar 

  86. Shanmugsundram, E. R. B.; Shanmugsundaram. K. R.; Hebert, R.; Malik, S.; Baker, M.; US 8 (1999). Application: US 98-48966 19980326.

    Google Scholar 

  87. Ye, W.; Dai, Y.; Cong, X.; Zhu, X.; Zhu, X.; Zhao, S.; PCT Int. Appl. 33 (2000). Application: WO 2000-2000CN10 20000121

    Google Scholar 

  88. Numata, K.; Jpn. Kokai Tokkyo Koho 4 (1991). Application: JP 89-187906 19890719.

    Google Scholar 

  89. Kosbab, J. V.; PCT Int. Appl. 50 (2000). Application: WO 99-US17633 19990803

    Google Scholar 

  90. Hiji, Y.; US 8 (1990). Application: US 87-117587 19871106.

    Google Scholar 

  91. Nichiji, Y.; Jpn. Kokai Tokkyo Koho 4 (1988). Application: JP 86-263867 19861107.

    Google Scholar 

  92. Hwang. B. Y.; Choi, S. Y.; Eur, Pat. Appl. 8 (1991). Application: EP 90-101885 19900131.

    Google Scholar 

  93. Kenmasa, G.; Yamashita, F.; Jpn. Kokai Tokkyo Koho 3 (1987). Application: JP 86-87128 19860471

    Google Scholar 

  94. Yumoto, T.; Gunji, Y.; Iida, S.; Suzuki, K.; Jpn. Kokai Tokkyo Koho 5 (1989). Application: JP 87-305380 19871201.

    Google Scholar 

  95. Ito, K.; Shoji, T.; Tabata, S.; Sugimoto, M.; Jpn. Kokai Tokkyo Koho 9(1999). Application: JP 98-332707 19981124.

    Google Scholar 

  96. Oizumi, A.: Jpn. Kokai Tokkyo Koho 4 (1998). Application: JP 96-156470 19960618.

    Google Scholar 

  97. Kanamaru, M.; Jpn. Kokai Tokkyo Koho 8 (1996). Application: JP 94-310005 199441118

    Google Scholar 

  98. Kurihara, Y. (1992). “Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins”. Crit Rev Food Sci. Nutr. 32 (3): 231 – 252.

    Google Scholar 

  99. Nadkarni, K. M. (1986) Indian Materia Mdidca, (Popular Prakashan, Bombay 1315 – 1319.

    Google Scholar 

  100. Kinghorn, A. D. and Compadre, C.M. (2001) Alternative sweeteners. Third Edition. Revised and expanded. Marcel Dekker ed. Newyork.

    Google Scholar 

  101. Oudhia, P., (2003) Researeh Note on Medicinal herb of Chhattirgarl, India Plants less known traditional uses. IX.

    Google Scholar 

  102. Kirtikar. K. R., and Basu, B.D. (1994) Indian Medicinal plants, vol II, 2nd Edn. (Bishen Singh Mahendrapal Singh, Dehradun, India).

    Google Scholar 

  103. Kuliev A. A. and Guseinova, N. K. (1974) The content of vitamin C, B1, B2 and E in some fruits. Referativnyi Zhrnal. 2; 69-73.

    Google Scholar 

  104. Tomoda, M. Shimuju, N. and Gonda, R. (1985) Pectic substances II. The location of O – acetyl groups and the Smith degradation of Ziziphus Pectin A. Chemical and Pharamceutieal Bulletin. 33(9): 4017-4020.

    Google Scholar 

  105. Hsieh, W. Lee, M. Lin, Y. and Liao J. (2000) Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxietly. Journal of Ethnopharmacology 72: 20-23.

    Google Scholar 

  106. Dwivedi, R.S.; 1999 Unnurtured and untapped super sweet nonsacchariferous plant species of India. Current Science 76(11), 1454 – 1461.

    Google Scholar 

  107. Mahajan, R.T.; Chopda M.Z.; (2009) “Phyto-Pharmacology of Ziziphus jujuba mill – A plant review” Pharmacognosy Review 2(6), 320 – 329.

    Google Scholar 

  108. Rushforth, K. 1999 Trees of Britin and Europe. Collins ISBN 0-00-220013-9.

    Google Scholar 

  109. Pareek, O.P. (2001) Fruits for the Future 2; Ber. (Interanational Centre for Undertilized Crops, University of Southampton, Southampton. UK).

    Google Scholar 

  110. Abdullah, Yusuf Ali (1946) The Holy Qur-an. Taxt, Translation and Commentary, Qatar National Printing Press, p. 1139, n. 3814.

    Google Scholar 

  111. Easton, M.G., M.A., D.D. (1893). Illustrated Bible Dictionary and Treasury of Biblical History, Biography, Geography, Doctrine, and Literature. London, Edinburgh and New York: T. Nelson and Sons. p. 688.

    Google Scholar 

  112. Gupta, Anil K. (2004) “Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration”. Current Science, 87, (1), 54 – 59.

    Google Scholar 

  113. Kirkbride, Joseph H.; Wiersma, John H.; Turland, Nicholas J. (2006). (1753).

    Google Scholar 

  114. Barrie, Fred R. (2011). “Report of the General committee: Taxon. International Association for Plant Taxonomy. 60(4): 1211-1214.

    Google Scholar 

  115. Edward T. Hager. (2017) “Jujubes: Plant Care and Collection of Varieties” (https://garden.org/plants/group/jujubes/). garden.org.

  116. Chaudhary. S., (2001) “Rhamnaceae” in: Chaudhary, C.; (Ed). Flora of the Kingdom of Saudi Arabia. Vol 11 (Part One) 2001.

    Google Scholar 

  117. “Rare Fruit: Jujubes “(http://www.seasonalchef.com/jujubes.htm) Seasonalchcf.com. Retrieved 1 August 2010.

  118. Edible Medicinal and Non-Medicinal Plants. Volume 5, Fruits. Lim, T.K. Dordrecht: Springer Science + Business Meida. 2013. p. 580. ISBN 978-94007565526.

    Google Scholar 

  119. “La pastinaoa di Santu Patl”(http://www.quoquo.it/la-galleria-dei-beni-culturall/178-la-pastinaca-di-santu-pati). Ww.quoquo.it.

  120. Jujube – Wikipedia (http://www.in.wikepeida.org./wiki/ziziphin.)

    Google Scholar 

  121. Goetz P. (2009) “Demonstration of the psychotropic effect of mother tincture of Zizyphus jujuba”Phyotherapie 7 (1), 31 – 36.

    Google Scholar 

  122. Jiang J.-G., Huang X.-J., Chen J., Lin Q.-S., (2007) “Comparison of the sedative and hypnotic effects of flavonoids, saponins, and polysaccharides extracted from Semen Ziziphus jujube”, Natural Product Research 21:4 (310-320).

    Google Scholar 

  123. Chopra, R. N. Nayar, S.C., and Chopra, I.C., (1986) Glossary of Indian Medicinal Plants. (Council of Industrial and Scientific Research. New Delhi. 1986).

    Google Scholar 

  124. Martin. Laura C. (2007). Tea: The Drink that Changed the World. Rutland. Vermont: Tuttle. P. 91. ISBN 0-8048-3724-4.

    Google Scholar 

  125. Srivastava. S. K. and Srivastava, S. D. (1979) Structure of Zizogenin, a new sapogenin from Ziziphus mauritiana. Phytochemistry. 18(10): 1758-1759.

    Google Scholar 

  126. Tschesche, R. Shah, A. H. Eckhardt, G. Sativanine-A and sativaninc – B (1979). two new cyclopeptide alkaloids from the bark of Ziziphus sativa. Phytochemistry. 18:9-11.

    Google Scholar 

  127. Shah, A.H. Pandey, V.B. Eckhardt, G. and Tschesche, R. (1985a): A 13 membraned cyclopeptide alkaloid from Ziziphus sativa. Phytochemistry. 24(11): 2765-2767.

    Google Scholar 

  128. Ziyaev, R. Irgashev, T. Israilov, I.A. Abdullaev, N.D. Yunusov, M. S. and Yunusov, S. Y. (1977) Alkaloids of Ziziphus jujuba. Structure of iusiphine and iusirine. Khimiya Prirodnykh So edinenil 2: 239-243.

    Google Scholar 

  129. Han. B. H. and Park. M. H. (1986) Studies on the sedative alkaloids from Ziziphin inosasemen (seed Saengyak Hakhoechi. 16(4): 233-238.

    Google Scholar 

  130. Han, B. H. Park, M. H. and Han, Y. N. (1990) Cyclic peptide and peptide alkaloids from seeds of Zizihups vulgaris. Phytochemistry. 29(10): 3315-3319.

    Google Scholar 

  131. Jossang, A. Zahir, A. and Diakite, D. (1996) Mauritine. J., a cyclopeptide alkaloid from Ziziphus mauritiana. Phytochemistry. 42: 565-567.

    Google Scholar 

  132. Tripathi, M. Pandey, M.B. Jha, R. N. Pandey, V. B. Tripathi, P.N. and Singh, J.P. (2001) Cyclopeptide alkaloids from Ziziphus jujuba. Fitoterapia. 72: 507-510.

    Google Scholar 

  133. Otsuka, H. Ogihara, Y. and Shibata, S. (1974) Phytochemistry. 2016.

    Google Scholar 

  134. Woo, W. S. Kang, S.S. Shim, S. H. Wagner, H. Chari, V. M. Seligmann, O. Obermeier, G. (). The structure of spinoisin (2"-0-betaglucoshyiswertisin) from Ziziphus vulgaris var. spinosus (seeds). Phytochemistry, 18(2): 353-355.

    Google Scholar 

  135. Yoshikawa, M. Murakami, T. Ikebata. A. Wakao, S. Murakami, N. Matusda, Y. (1997) Bioactive saponins and glycosides. X. On the constituents of Zizyphi spinosi semen, the seeds of Ziziphus jujuba Mill. Var. spionosa Hu (1): structures and histamine release-inhibitory effect of jujuboside B. Chcm Pharm Bull. 45: 1186-1192.

    Google Scholar 

  136. Kurihara, Y. Oohubo, K. Tasaki, H. Kodama, H. Akiyama, Y. Yogi, A. and Halperm, B. (1988). Studies on taste modifiers I. Purification and structure in leaves of Ziziphus jujuba. Tetrahedron. 44(l):61-66.

    Google Scholar 

  137. Ikram. M. Ogihara, Y. and Yamasaki, K. (1981) Structure of new saponin from Zizphus vulgaris. Journal of Natural Products. 44(1): 91-93.

    Google Scholar 

  138. Sharma. S. C. and Kumar, R. (1982) Constituents from leaves of Ziziphus mautitiana I.amk. Pharmazie. 37(11): 809-810.

    Google Scholar 

  139. Shou, C. Feng. Z. Wang, J. and Zhcn, X. (2002) The inhibitory effects of jujuboside A on rat hippocampus in vivo and in vitro. Planta Medica. 68: 18.

    Google Scholar 

  140. Zhou, Y. Li, Y. Wang. Z. Ou, Y. and Zhou, L. (1994) IH NMR and spin labeted EPR studies interaction of calmodulin with jujuboside A. Biochemical and Biological Research Communication. 202: 148-154.

    Google Scholar 

  141. Cheng, Gong Yanjing Bai, Yuying Zhao, Jing Tao, Yi Liu, Guangzhong Tu, Libin Ma, Ning Liao and Xiaojie Xu, (2000) Flavonoids from Ziziphus jujuba Mill var. spinasa. Tetrahedron 56. 8915 – 8920.

    Google Scholar 

  142. Zeng, L.; Zhang, R. Y. and Wang., X. (1987) Studies on the constituents of Z spinousus Hu. Acta Pharm Sin. 22: 114-120.

    Google Scholar 

  143. Pawlowska, A. M. Camangi, F.; Bader, A. and Braca, A.; (2000). Flavonoids of Zizyphus jujuba and Zizyphus spina-christi (L) Wild (Rhamnaceae) fruits. Food Chemistry 112: 858-862 (2000).

    Google Scholar 

  144. Lee, S.; Min, B. Lee, C. Kim, K. and Kho. Y. (2003). Cytotoxic triterpenodis from the furits of Zizphus jujuba. Planta Medica. 69. 18-21.

    Google Scholar 

  145. Shoei, S. L. Buh, F.L. and Karin, C.L.(1996) Three triterpene esters from Ziziphus jujuba. Phytochemistry. 43(4): 847 – 851.

    Google Scholar 

  146. Sang, M. L. Jin, G. P. You, H.L. Cheal, G. L. Byung, S. M. Jung, H. K. and Hyeong, K. L.(2004) Anti – complementary Activtity of Tritcrpenodes from Fruits of Zizyphus jujuba. Biol. Pharm. Bull. 27(11): 1883 – 1886.

    Google Scholar 

  147. Kim, D. S. H. L. Pezzuto, J. M. and Pisha, E. (1998) Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorganic and Medicinal Chemistry Letters. 8: 1707-1712.

    Google Scholar 

  148. Eiznhamer, D. and Xu., Z. (2004) Betulinie acid a promising anticancer candidate. Int. Drugs, 4: 359 – 373.

    Google Scholar 

  149. WenHuang, Peng. Ming, Hsieh, Lee, Tsuen Yi, Lin Shung, YiChin and Jen, Liao (2003). Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. Jouranl of Ethanopharmacology. 72(3): 435 – 441.

    Google Scholar 

  150. Suttisri, R. Lee, I. S. and Kinghorn, A. D.(1995) Plant – derived triterpenoid sweetness inhibgitors. Journal of Ethnopharmacology. 47(1): 9 -26.

    Google Scholar 

  151. Smith. V. V. and Halpern, B. P. (1983) Selective suppression of judged sweetness by ziziphins. Physiol Behav. 30(6): 867-874.

    Google Scholar 

  152. Pisha, E. Chai, H. Lee, I. Chagwedera. T. Famsworth, N. Cordell, G. Beecher, C. Fong, H. Kinghorn, A. and Brown. D. (1995) Discovery of betulinie acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 10: 1046 – 1051.

    Google Scholar 

  153. Sarfaraz, A. Ansari, S. H. and Porchezhiz, E. (2002) Antifungal activity of alcoholic extracts of Ziziphus vulgar is and Acacia concinna. Hamdard Medicus. Bait al-Hikmah, Karachi, Pakistan. 1/15:42-45.

    Google Scholar 

  154. Mukharjee, P. K. Mukharjee, K. Rajesh Kumar, M. Pal, M. and Saha, B. P. (2003) Evaluation of the wound healing Activtiy of Some Herbal Formulations. Phytother. Res. 17: 265-268.

    Google Scholar 

  155. Ganachari, M. S. and Shiv, K. (2004) Anti-ulcer properties of Ziziphus jujuba leaves exteract in rats. Journal of Natural Remedies. 4: 103-108.

    Google Scholar 

  156. Huang, L. Y. W., Cai, B. Li, D. Liu, J. and Liu. M. (1990) A preliminary study on the pharmacology of the compound prescription huangqin tang and its component drugs. Zhongguo Zhong Yao Zhi. 15: 115-128.

    Google Scholar 

  157. Shiv, K. Ganachari, M.S. and Banappa Nagoor, V. S.(2004) Anti-inflammatory activity of Ziziphus jujuba Lamk. Leaves extract in rats. Jouranl of Natural Remedies. 4: 183 – 185.

    Google Scholar 

  158. Su, B. N. C. M. Farnshworth, N. R. Fong, H. H. Pezzuto, J. M. and Kinghorn, A. D. (2002) Activity – guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitory assay, Planta Med. 68: 1125-1128.

    Google Scholar 

  159. Eley, J. G. and Hosscin, D. (2002) Permeability enhancement activity from Ziziphus jujuba. Pharmaceutical Biology. 40: 149-153.

    Google Scholar 

  160. Heo, Hojin, Young, Park, Suh, June, Min, Young. Soojung, Choi, HongYon, Cho, Chang, Hong, B. (2003) Activities. Bioscience Biotechnology y and Biochemistry 67: 23-27.

    Google Scholar 

  161. Gupta, R. B. Sharma, S. Sharma, J. R. and Goyal, R. (2004) Study on the physicochemical characters of fruits of some wild and cultivated form/spp. (Zizphus spp.), Harayna Journal of Horticultural Sciences 33 (3/4) 167-169.

    Google Scholar 

  162. Kim, H. Y. and Han, S. W. (1996) Zizpihus jujuba and Codonopsis pilosula stimulate nitric oxide release in cultured endothelia cells and kidney tissues. In Asia Pacific Journal of Pharmology. 11:26-29.

    Google Scholar 

  163. Fukuyama, Y, Mizuta K., Nakagawa, K., Chin, W. J. and Wax. E. (1986), New Neo-lignun, a prostaglandin 12 indvcer from the leaves of Z. jujuba. Plant a Medica, 6, 501-512.

    Google Scholar 

  164. Hee Seong, Ko, Choi, Won. Kyu, Sang Angho, Ye. Yoo, S. Hyun Kim, Sook and Hee Myung Chun. (2008) Comparison of anti-oxidant activities of seventy herbs that have been used in Korena traditional medicine. Nutrition Research and Practice. 2(3): 143-151.

    Google Scholar 

  165. Na, M. An, R. Lee, S. Hong, N. Yoo, J. Lee, C. Kim, J. Bae, K. (2001) Screening of crude drugs for antioxidantive activity. Korean Journal of Pharmacognosy. 32: 108-115.

    Google Scholar 

  166. Ansari, S. H. Bhatt, D. Masihuddin, M. and Khan, M.U. (2006) The wound healing and herbal drugs. In: Herbal Drugs. Jay Pee Publication, New Delhi; 460-468.

    Google Scholar 

  167. Anonymous, The Wealth of India (Raw material), (1989) (Council industrial and Scienific Research, New Delhi, India. Vol XI: X-Z, 111-124.

    Google Scholar 

  168. Ted Radovich T. (2011). C. R. Elevitch, ed. “Farm and Forestry Production and Marketing Profile for Moringa (revised February 2011)”(http://agroforestry.net/scps/Moringa_sepecialty_crop.pdf) (PDF) as special crops for pacific Island Agroforestry. Holualoa, Hawai Permanent Agriculture Resources.

  169. Olson, Mark E (2010). Moringaceae Mrtinov; Drumstick Tree Family; In: Flora of North America, North of Metro volume 7: Magnoliophyta: Dilleniidae, Part 2 Oxford University Press.p. 168. ISBN 0195318226

    Google Scholar 

  170. “Horseradish tree”(http://www.britannica.com/EBcherea/topic/172119/horseradish-tree). Encyclopedia Britannica Retrieved 2015. 04, 25.

  171. Leone A. Spada A, Battezzati A, Aristil J Bertoli S (2015). “Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview”. Int J Mol Sci. 16(6). 12791-835.

    Google Scholar 

  172. Parotta, John A. (1993). “Moringa oleifera Lam. Reseda, horseradish tree. Moringaceac, Horseradish tree family” (http://www.fs.fed.us/global/litf/pubs/sm_litf/pubs/sm_iitf061%20%(6).pdf) (PDF). USDA Forest Service institute of Tropical Forestry. Retrieved 2013-11-20.

  173. Kumar, P., Singh. P. and Singh, T. P. (2017). Drumstick (Moringa oleifera) as a food additive in livestock produets J. Food Sci. Nutrition. 45(3), 1-15.

    Google Scholar 

  174. Grubben, G. Grubben, G. J. H., ed. Vegetables (,https://books.gooele.com/books?id=6jrlyOPfr24C&lpg=PA394&ots=DqyftRKuYZ&dq=pollarding%20moringa&pg=PA394#v=onepage&q=pollarding%20moring&f=false). Resources of tropical Africa ed.). p. 394. ISBN9057821478 Retrieved 2015-02-02.

  175. Ramachandran, C.; Peter, K.V.; Gopalakrishnan, P.K. (1980). “Drumstick (Moringa oleifera) A multipurpose India vegetable”. Economic Botany 34(3): 276-283.

    Google Scholar 

  176. Amaglo, N. (2006) “How to Produce Moringa Leaves Efficiently?” (http://www.moringanews.org/doc/GB/Groups/Group_2_Newton_text_GB.pdf) (PDF). Retrieved 2013 – 11-19.

  177. Bennett, R.N., Mellon, F.A., Foidl, N., Pratt, J.H., Dupoint, S.M., Perikins, L. and Kroon, P.A. (2003), “Glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose tress M. Oleifera L. (Horseradish Tree) and Moringa stempetala L, “Journal of Agricultural and Food Chemistry, 51 (12), 3546-3553.

    Google Scholar 

  178. Aja, PM, N. Nwachukwu2, U.A. Ibiam1, I.O. Igwenyi1, C.E. Offor1 and Orji1 (2014) Chemical Constituents of Moringa oleifera Leaves and Seeds from Abakaliki, Nigeria AJPCT[2][3][2014]310-321.

    Google Scholar 

  179. Abd Rani, NZ, Hesain K and Kumolosasi, E (2018). Moringa Genus : A review of phytochemistry and pharmacology. Front. Pharmacology. 9:108. Doi: https://doi.org/10.3389/FP//AR.2018.00108.

  180. Vongsak, B., Mangmool, S., and Gritsanapan, W. (2015). Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cell of M. oleifera leaf extract. Planta Med. 81, 1084-1089. Doi: https://doi.org/10.1055/s-0035-1546168.

  181. Leone. A., Spada, A, Battezzati, A., Schiraldi, A., Aristil, J., and Bertoli, s. (2015b). Cultivation, genetic ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves : an overview. Int. J. Mol. Sci. 16,12791-12835. Doi: https://doi.org/10.3390/ijms160612791.

  182. Vongsak, b. Sithisarn, P., and Gritsanapan, W. (2014). Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J. Chromatogr. Sci. 52, 641-645. Doi: https://doi.org/10.1093/chromsci/bmto93.

  183. Habtemariu, 5 and Verghase G.K. (2015) Extractability of rutin inherbal tea preparation of Moringa leaves. Beverages 1, 169-182

    Google Scholar 

  184. Devaraj V.C., Krishna, B.G., and Vishwanatha, G.L. (2011). Simultaneous determination of quercetin, rutin and kaempferol in the leaf extracts of Moringa oleifera Lam. And Raphinus sativus Linn. By liquid chromatography-tandem mass spectrometry. J. Chin. Integrat. Med 9, 1022-1030. Doi: https://doi.org/10.3736/jcim20110914.

  185. El-Alfy, T.S., Ezzat, S.M., Hegazy, A.K.. Amer, A.M.M., and kamel, G.M. (2011). Isolation of biologically active constituents from Moringa peregrine (Forssk.) Fiori, (family: Moringaceae) growing in Egypt. Pharmacogn. Mag. 7, 109-115. Doi: https://doi.org/10.4103/0973-1296.80667

  186. Leone, A., Fiorillo. G., Criscuoli, F., Ravasenghi, S., Santagostino, L., Fico, G., et al. (2015a). Nutritional characterization of phenolic profiling of Moringa oleifera leaves grown in Chad Sahrawi refugee camps, and Haiti, Int. J. Mol. Sci. 15, 18923-18937, Doi: https://doi.org/10.3390/ijms160818923.

  187. Fahey. J.W.(2005), “M. Oleifera: a review of the medical evidence for ite nutritional, therapeutic, and prophylactic properties part 1”. Trees for Life Journal, Vol. 47 No. pp. 585-591.

    Google Scholar 

  188. Manguro. L.O., and Lemmen, P. (2007). Phenolics of Moringa oleifera leaves. Nat. prod Res. 21, 56-68. Doi: https://doi.org/10.1080/14786410601035811.

  189. Mekonnen, Y., and Drager, B. (2003). Glucosinolates in Moringa stenopetala. Planta Med. 69, 380-382. Doi: https://doi.org/10.1055/s-2003-38881.

  190. Tumer, T.B., Rojas-Silva, P., Poulev, A., Raskin, I., and Waterman, C. (2015). Direct and indirect antioxidant activity of polyphenol-and isothiocyanate-enriched fractions from Moringa oleifera.J.Agric.Food Chem. 63, 1505-1513. Doi: https://doi.org/10.1021/jf505014n.

  191. Verma, A.R., Vijayakumar, M„ Mathela, C.S., and Rao, C.V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol. 47, 2196-2201. Doi: https://doi.org/10.1016/j.fct.2009.06.005.

  192. Al-Owarsi, M., Al-Hadiwi, N., and Khan, S.A. (2014). GC-MS analysis, determination of total phenolics, flavonoids content and free radical scavenging activities of various crude extracts of Moringa peregrine (Forssk). Fiori leaves. Asian Pac, J. Trop. Biomed. 4, 964-970.

    Google Scholar 

  193. Sahakitpichan, P., Mahidol, C., Disadee, W., Ruchirawat, S., and Kanchanapoom. T, (2011). Unusual glycosides of pyrrole alkaloid and 4-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry 72, 791-795. Doi: To. 1016/J.PHYOCHENT. 2011.02.021.

  194. Panda, S., Kar, A., Sharma, P., and Sharma, A. (2013). Cardioprotective potential of N, α-L-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats ; in vivo and in vitro studies. Bioorg. Med Chem. 23, 959-962.

    Google Scholar 

  195. Sashidara K.V., Rosaiah, J.N., Tyagi, E., Shukla, R., Raghubir, R., and Rajendran, S.M. (2009). Rare dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and antinociceptive agents. Eur.J.Med.Chem. 44, 432-436. Doi: https://doi.org/10.1016/j.ejmech.2007.12.018.

  196. Jung, I.L., (2014). Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS ONE 9:E95492. Doi: https://doi.org/10.1371/journal.pone.0095492.

  197. Murakami, A., Kitazon, Y., Jiwajinda, S., Koshimizu, K, and Ohigashi, H. (J998). Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr Virus activation. Planta Med. 64, 319-323. Doi: https://doi.org/10.1055/s2006-957442.

  198. Maiyo F.C., Moodley, R., and Singh, M. (2016). Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O-glucoside and 4-(beta-D-glucopyranosyl-l->4-alpha-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer. Agents Med. Chem. 16, 648-656. Doi: 566151002110424.

  199. Shanker, K., Gupta, M.M., Srivastava, S.K., Bawankule, D.U., Pal, A., and Khanuja, S.P.S. (2007). Determination of bioactive nitrile glycoside (s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chem. 103. 176-382. Doi: https://doi.org/10.1016/j.foodchem.2006.12.034.

  200. Faizi, S., Siddiqui, B.S., Saleem, R., Siddiqui, S., and Aftab, K. (1994). Isolation and structure elucidation of new nitrile and mustard oil glycosides from Meringa oleifera and their effect on blood pressure. J. Nat. Prod. 57, 1256-1261. Doi: https://doi.org/10.1021/np50111a001.

  201. Singh., B.N., Singh, B.R., Singh, R.L., Prakash, D., Dhakarey, R., Upadhyay, G., et al. (2009). Oxidative DNA damage protective activity, antioxidant and antiquorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 47, 1109-1116. Doi: https://doi.org/10.1016/j.fct.2009.01.034.

  202. Al-Asmari, A.K., ALBALAWI, S.M., Athar, M.T., Khan, A.Q.,-AL-Shahrani, H., and Islam, M. (2015). Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines, PLoS ONE 10.E0135814. Doi: https://doi.org/10.1371/journal.pone.135814.

  203. Saini, R.K., Sivanesan, I., and Keum, Y.S (2016). Pyhtochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 6, 1-14. Doi: https://doi.org/10.1007/s13205-016-0526-3.

  204. Memon, G.M., Memom, S.A. and Memon, A.R. (1985). Isolation and structure elucidation of moringyne-a new glycoside from seeds of Moringa oleifera Lam. Pak. J. Sci. Ind. Res. 28,7-9.

    Google Scholar 

  205. Guevara, A.P., Vargas, C., Sakurai, H., Fujjwara, Y., Hashimoto, K., Maoka, T., et al. (1999). An antitumor promoter from Moringa oleifera Lam. Mutat. Res. 440. 181-188. Doi: https://doi.org/10.1016/S1383-5718(99)00025-X.

  206. Das, B.R., Kurup, P.A., and Narasimha Rao, P.L. (1957). Antibiotic principle from Moringa pterygosperma. VII. Antibacterial activity and chemical structure of compounds related to pterygosperim. Indian J. Med. Res. 45, 191-196.

    Google Scholar 

  207. Atawodi, S.E., Atawodi, J.C., Idakwo, G.A. Pfundstein, B., Haubner, R., Wurtele, G., etal. (2010). Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam, J.Med. Food. 13, 710-716. Doi: https://doi.org/10.1089/jmf.2009.0057.

  208. Bargah, R.K., and Das, C. (2014). Isolation and characterization of steroidal glycoside from chloroform extract of the stem bark of Moringa pterygosperma Gaertn. Int.J. Innov. Res. Sci. Eng. Technol. 3, 18319-18322, doi: https://doi.org/10.15680/IJIRSET.2014.0312077.

  209. Kleiman, R., Ashley, D.A., and Brown, J.H. (2008). Comparison of two seed oils used in cosmetics, moringa and marula. Ind. Crops Prod. 28, 361-364. Doi: https://doi.org/10.1016/j.indcrop.2008.04.003.

  210. Nikkon, F., Saud, Z.A., Rahman, M.H., and Haque, M.E. (2003). In vitro antimicrobial activity of the compound isolated from chloroform extract of Moringa oleifera Lam. Pak. J. Biol. Sci. 6, 1888-1890. Doi: https://doi.org/10.3923/pjbs.2003.1888.1890.

  211. Nibret, E., and Wink, M. (2010). Trpanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine 17, 911-920. Doi: https://doi.org/10.1016/j.phymed.2010.02.009.

  212. Lalas, S and Tsaknis (2002) Characterization of M. oleifera L seeds oil varieties Periyakulam-1. J food compos.Anal. 15, 65-77.

    Google Scholar 

  213. Lakshmipriya ji, kruthi Doriya, Devarai Santhosh kumar (2016) Moringa oleifera : A review on nutritive importance and its medicinal application Food science and human wellness, 5 (2), 49-56.

    Google Scholar 

  214. Abbas, R.K., Elsharbay, F.S., Fadhelmula-2018, S.E. Nutritional values of Moringa oleifera, total protein, Amino acid, vitamins, minerals, carbohydrates, total fat, crude fiber, under thjam acid condition of sedan. J. Microbial and Biochemical Technology : 10(2), 56-58

    Google Scholar 

  215. Ragasa, C.Y., Vincent Antonio S. Ng and Chien-Chang Shen (2016) Chemical Constituents of Moringa oleifera Lam. Seeds. Int. J. Pharm. and Phyt. Res. 8 (3); 495-498

    Google Scholar 

  216. S.M. Divi, R. Bellamkonda, S.K. Dasireddy Evaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant STZ induced diabetic wistar rats : a comparative study Asian J. Pharm, Clin. Res., 5(2012), pp. 67-72

    Google Scholar 

  217. A.L. Al-Malki, H.A. E1 Rabey The antidiabetic effect of low doses of Moringa oleifera Lam. Seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats Biomed. Res. lnt., 2015 (2015), pp. 1-13.

    Google Scholar 

  218. Paula, P.C., Sousa, D.O., Oliveira, J.T., Carvalho, A.F., Alves, B.G., Pereira, M.L., et al. (2017). A protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effeets in alloxan-induces diabetic mice. Molecules 22,1-15. Doi: https://doi.org/10.3390/molecules22020271.

  219. H. Kaneto, Y. Kajimoto. J. Miyagawa, T. Matsuoka, Y. Fujitani, Y. Umayahara, T. Hanafusa, Y. Matsuzawa, Y. Yamasaki, M. Hori Beneficial effects of antioxidants in diabetes : possible protection of pancreatic β-cells against glucose toxicity Diabetes, 48 (1999), pp. 2398-2406.

    Google Scholar 

  220. Paula, P.C. Oliveira, J.T., Sousa. D.O., Alves. B.G., Carvalho, A.F., Franco, L.L., et al. (2016). Insulin-like plant proteins as potential innovative drugs to treat diabetes-The Moringa oleifera case study. N. Biotechnol. 39,99-109. Doi : https://doi.org/10.1016/j.nbt.2016.10.005

  221. D. Aronsort, E.J. Rayfield How hyperglycemia promotes atherosclerosis: molecular mechanisms Cardiovasc. Diabetol., 1 (2002), p. 1

    Google Scholar 

  222. P. Chumark, P. Khunawat, Y. Sanvarinda, S. Phornchirasilp, N.P. Morales, L. Phivthongngam, P. Ratanchamnong, S. Srisawat, K.U. Pongrapeeporn the in vitro and ex vivo antioxidant peoperties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. Leaves J. Ethnopharmacol., 116 (2008), pp. 439-446.

    Google Scholar 

  223. A. Hermawan, K.A. Nur, Sarmoko, D. Dewi, P. Putri, E. Meiyanto Ethanolic extract of Moringa oleifera increased cytotoxic effect of doxorubicin on HeLa cancer cells J. Nat. Remedies. 12 (2012), pp. 108-114.

    Google Scholar 

  224. N. Miyoshi, K. Uchida, T. Osawa. Y. Nakamura A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation Cancer Res., 64 (2004), pp. 2134-2142.

    Google Scholar 

  225. Rajan, T.S., De Nicom, G.R., Iori, R. Rollin, P., Bramanti, P., and Mazzon, E. (2016). Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 110, 1-7. Doi : https://doi.org/10.1016/j.fitote.2016.02.007

  226. Monera, T.G., Wolfe, A.R., Maponga, C.C., Benet, L.Z., and Guglielmo, J. (2008). Moringa oleifera leaf extracts inhibit 6 β -hydroxylation of testosterone by CYP3A4. J.Infect. Dev. Ctries. 2,379-383. Doi : https://doi.org/10.3855/jidc.201.

  227. Berkovich, L., Earon, G., Ron, I., Rimmon, A., Vexler, A., and Lev-Ari, S. (2013). Moringa oleifera aqueous lead extract down-regulates nuclear factor-kappa B and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 13,212-218. Doi: https://doi.org/10.1186/1472-6882-13-212.

  228. Budda, S., Butrye, C.. Tuntipopipat, S., Rungsipipat, A. Wangnaithum, S., Lee, J.S., et al. (2011). Suppressive effects of Moringa oleifera Lam Pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac. J. Cancer Prev. 12,3221-3228.

    Google Scholar 

  229. Ndhlala A.R., Mulaudzi, R., Ncube, B., Abdelgadir, H.A., Plooy, C.P., and Staden, J.V. (2014). Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. Cultivars. Molecules 19, 10480-10494. Doi: https://doi.org/10.3390/molecules190710480.

  230. Gupta, K., Barat, G.K., Wagle. D.S. and Chawala, H.K.L. (1989), “Nutrient contents and anti nutritional factors in conventional and non-conventional leafy vegetables,” Food Chemistry, 31 (2), 105-116.

    Google Scholar 

  231. Kaur, G., Invally, M., Sanzagiri, R., and Buttar, H.S. (2015). Evaluation of the antidepressant activity of Moringa oleifera alone and in combination with fluoxetine. J. Ayurveda Integr. Med. 6,273-279. Doi: https://doi.org/10.4103/0975-9476.172384.

  232. Prakash, A.O., Pathak, S., Shukla, S., and Mathur, R. (1988). Pre and Post-Implantation changes in the uterus of rats : response to Moringa Oleifera Lam. Extract. Ane.Sci.Life. 8,49-54.

    Google Scholar 

  233. Arulselvan, P., Tan, W.S., Gothai, S., Muniandy, K., Fakurazi, S., Mohd Esa, N., et al. (2016). Anti-inflammatory potential of ethyl acetate fraction of Moringa oleifera in Downregulating the NF-kB signaling pathway in lipopolysaccharide-stimulated macrophage. Molecules 21, 1452-1465. Doi: https://doi.org/10.3390/molecules21111452.

  234. Kurokawa, M., Wadhwani, A., Kai, H., Hidaka, M., Yoshida, H., Sugita, C., et.al. (2016). Activation of cellular. immunity in herpes simplex virus type 1-infected mice by the oral administration of aqueous extract of Moringa oleifera Lam. Leaves. Phytother Res. 30,797-804. Doi: https://doi.org/10.1002/ptr.5580.

  235. Ghiridhari, V.V.A., Malhati, D., and Geetha, K.. (2011). Anti-diabetic properties of drumstick (Moringa oleifera) leaf tablets. Int. J. Health Nutr. 2,1-5.

    Google Scholar 

  236. Waterman. C., Rojas-Silva, P.. Tumer, T.B., Kuhn, P., Richard, A.J., Wicks, S., et al. (2015). Isothiocyanate-rich Moringa oleifera extract reduces weigh gain, insulin resistance and hepatic gluconeogenesis in mice. Mol. Nutr. Food Res. 59, 1.13-1024. Doi: https://doi.org/10.1002/mnfr.201400679.

  237. Silver J. (2017) Moringa oleifera : The future health. Village Volunteers 1-9.

    Google Scholar 

  238. Anwar, F., Latif, S., Ashraf, M., and Gilani, A.H. (2007). A food plant with multiple medicinal uses. Phytother. Res. 21, 17-25. doi : https://doi.org/10.1002/ptr.2023.

  239. Yabesh. J.E., Prabhu, S., and Vijayakumar, S .(2014). An ethnobotanical study of medicinal plants used by traditional healers in silent valley of Kerala, India. J. Ethnopharmacol. 154. 774-789. Doi : https://doi.org/10.1016/j.jep.2014.05.004.

  240. Popoola, J.O., and Obembe, O.O. (2013). Local knowledge, use pattern and geographical distribution Moringa oleifera Lam. (Moringaceae) in Nigeria. J. Ethnopharmacol 150, 682-691. Doi: https://doi.org/10.1016/j.jep.2013.09.043

  241. Moyo, B., Masika, P.J. and Muchenje, 2014 “Effect of feeding Moringa (M. oleifera) least meal on the physic-chemical characteristics and sensory properties of goat meat”, South African Journal of Animai Science, 44 (1), 64-70.

    Google Scholar 

  242. Caceres, A., Cabrera, O., Morales, O., Mollinedo, J. Mendia, P. (1991), “Pharmacological properties of Moringa oleifera.1:preliminary anong for antimicrobial activity”. Journal of Ethnopharmacology, 33, 213-2.

    Google Scholar 

  243. Daljit, S.A.. Jemimah, G.O. and Harpreet, K. (2003), “Bioprospecting screening and antiuclerogenic effect of Moringa”, (Moringaceae): micropiolgical perspective”, Journal of Pharmacognosy and Phytochemistry, 1(6), 193-215.

    Google Scholar 

  244. Muthukumar, M., Naveena, B.M., Vaithiyanathan, S., Sen, A.R, and Sureshkumar, K. (2014), “Effect of incorporation of M. oleifera leaves extract on quality of ground pork patties”, Journal of Food Science and Technology, 51(11), 3172-3180.

    Google Scholar 

  245. Qwele, K., Muchenje, V., Oyedemi, S.O., Moyo, B. and Masika, P.J. (2013b). “Effect of dietary mixtures of moringa (M. oleifera) leaves, broiler finisher and crushed maize on anti-oxidative potential and physico-chemical chteristics of breast meat from broilers”, African Journal of Biotechnology, 8(2), 225.

    Google Scholar 

  246. Nadeem, M., Javid, A., Abdullah, M., Arif, A.M. and Mahmoo, T. (2012), “Improving nutritional value of butter milk by blending with dry leaves of M. oleifera”, Pakistan Journal of Nutrition, 11(9), 714-718.

    Google Scholar 

  247. “Traditional Crop of the Month” (http://www.fao.org/traditional-crops/moringa/en/). FAO. Retrived from 2015.04.25.

  248. Rashid, Umer; Anwar, Farooq; Moser, Bryan R.; Knothe, Gerhard (2008). “Moringa oleifera oil; A possible source of biodiesel” (https://naldc.nal.usda.gov/naldc/download.xhtml?id=18321&content=PDf). Bioresever 99(17). 8175-9. doi: https://doi.org/10.l016/j.biortech.2008.03.066 (https://doi.org/10.1016%2Fj.biortech.2008.03.066) PMID 18474424 (https://www.ncbi.nlm.nih.gov/pubmed/18474424).

  249. Atawodi, S. E.; Atawodi, J.C.; Idakwo, G. A.; Pfuds B. Haubner, R; Wurtele, G; Bartchi, H., Owen, (2010). “Evaluation of the polyphenol content and arrangement properties of methanol extracts of the leaves, of and root barks of Moringa oleifera Lam”. Journal of Medicinal Food. 13(3): 710-6. doi: https://doi.org/10.1089/jmf.2009,0057. (https://doi.org/10.1089%2Fjmf.2009.0057). PMID 20521992 (https://www.ncbi.nlm.nih.gov/pubmed/20521992).

  250. Reddy, D. Harikishore Kumar, Ramana D.K.V., K. Seshaiah and A.V.R. Reddy (2011) Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination. 268, (1-3), 150-157.

    Google Scholar 

  251. Morgan, C.R., Opio and C. S. Migabo (2020) Chemical composition of Moringa (Moringa oleifera) root powder solution and effects of Moringa root powder on E. coli growth in contaminated water. South African Journal of Botany, 129, March 2020, 243-248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Vegetal Taste Modifiers. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_15

Download citation

Publish with us

Policies and ethics