Skip to main content

Dihydrochalcones Flavonoid Super Sweet Principles

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 424 Accesses

Abstract

For the first time the attempts made in 1963 accompanied with that of 1969 by Horowitz and Gentili [1, 2] succeeded in isolating sweet dihydrochalcones such as naringin, neohesperidin and hesperidin from bitter citrus flovanones (Table 10.1). There after several variants were synthesized but only five compounds were found superior in sweetness. Three original compounds, derived from citrus flavanones e.g. naringin dihydrochalcone (I), neohesperidin dihydrochalcone (II), and hesperetin dihydrochalcone 4-β-d-glucoside (III) and remaining two viz. glycyphyllin and trilobatin obtained from Smilax glycyphylla and Symplocos paniculata respectively are mentioned below in Fig. 10.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horowitz. R. M. and Gentili. B. (1963). Dihydrochalcone derivatives and their use as sweetening agents, U. S. Patent 3,087,821.

    Google Scholar 

  2. Horowitz. R. M. and Gentili. B., Taste and structure in phenolic glycosides, J. Agric. Food Chem., 17: 696 – 700 (1969).

    Google Scholar 

  3. Horowitz, R. M. and Gentili, B. (1986). Dihydrochalcone sweeteners from citrus flavanones in (ed) HIggibotham, J. D., “Alternative sweeteners”.

    Google Scholar 

  4. Tomasik, P., ed. (2003). Chemical and Functional Properties of Food Saccharides. Boca Roton: CRC Press. p. 389. ISBN 978-0-84-931486-5.

    Google Scholar 

  5. Ribeiro, Maria H. (2011 – 06-01). “Naringinases: Occurrence, characteristics, and applications”. Applied Microbiology and Biotechnology. 90(6): 1883 – 1895.

    Google Scholar 

  6. Fuhr U. Kummert AL (1995). “The fate of naringin in humans: a key to grapefruit juice-drug interactions?”Clin pharamcol Ther. 58 (4): 365 – 373. Doi:10.1016/0009-9236(95)90048-9 (https://doi.org/10.1016%2F0009-9236%2895%2990048-9). PMID 7586927 (https://www.ncbi.nlm.nih.gov/pubmed/7586927).

  7. “BBC NEWS, Health Fruit jice could affect drugs’” (http://newsvote.bbc.co.uk/mpapps/pagetools/print/news.bbc.co.uk/2/hi/health/7572500.stm). 2008-08-20. Retrieved 2008 – 08 – 25.

  8. Edwards, D. J.; Bernier, S. M. (1996). “Naringin and naringenin are not the primary CYP3A inhibitors in grapefruit juice”. Life Sciences. 59 (13): 1025 – 1030. doi:10.1016/0024-3205(96)00417-1 (https://doi.org/10.1016%2F0024-3205%2896%2900417-1). ISSN 0024 – 3205 (https://www.worldcat.org/issn/0024-3205). PMID 8809221 (https://www.ncbi.nlm.nih.gov/pubmed/8809221).

  9. Lundahl, J.; Regardh, C. G.; Edgar, B.; Johnson, G. (1997). “Effects of grapefruit jice ingestion pharmacokinetics and haemodynamics of intravenously and orally administrered felodipine in healthy ment”. European Journal of Clinical Pharmacology. 52(2): 139 – 145. Doi: 10.1007/s002280050263 (https://doi.org/10.1007%2Fs002280050263). ISSN 0031 – 6970 (https://www.roldcat.org/issn/0031-6970). PMID 91746684 (https://www.ncbi.nlm.nih.gov/pubmed/9174684).

  10. Horowitz. R. M. and Gentili. B. Conversion of naringin to neohesperidin and neohesperidin dihydrechalcone, U. S. Patent 3,375,242 (March 26, 1968).

    Google Scholar 

  11. Krbechek. L., Inglett. G., Holik. M., Dowling. B>, Wanger. R., and Riter. R. Dihydrochalcones. Synthesis of potential sweetening agents, J. Agric. Food Chem., 16: 108 – 112 (1968).

    Google Scholar 

  12. Wikipedia: The free encyclopedia (8th Jan 2020). Citrus: Retrived from https://en.wikipedia.org/co.indexphp title citruc & oldid = “934731022”.

  13. Donald Kennedy, Food and Drug Commissioner, Letter dated January 15, 1979, a reported in Food Chemical news, January 22, 1979, p. 18.

    Google Scholar 

  14. Robertson G.H., Clark J.P., Lundin R. (1974) Dihydrochalcone sweeteners: Preparation of neohesperidin dihydrochalcone, Ind. Eng. Chem., Prod. Res. Devel., 13:125 – 129.

    CAS  Google Scholar 

  15. Veda, K., and Odawara, H. (1976). Neohesperidin from naringin, Jpn. Kokai 75, 154, 261 (December 12, 1975) [Chem. Abstr., 84: 180574].

    Google Scholar 

  16. Veda, K., and Odawara, H. (1976 A). Hydrolysis of naringin to phloracetophenone 4’ – β – neohesperidoside, Jpn. Kokai 75, 149, 635 (Nov. 29, 1975) [Chem. Abstr., 84: 180577].

    Google Scholar 

  17. Horowitz, R. M., and Gentili, B., (1971). Enzyme preparation of hesperetin dihydrochalcone glucoside, U. S. Patent 3,583,894.

    Google Scholar 

  18. Lebreton, M (1828). “Sur la matiere crystalline des orangettes, et analyse de ces frits non encore developpes, famille des Hesperidees”(http://gallica.bnf.fr/ark:/12148/bpt6k214864s/f380.image). Journal de Pharmacie et de Sciences Accessories. 14:377ff.

  19. “Metabocard for Hesperidin (HMDB03265)”(http://www.hmdb.ca/metabolites/HMDB03265). Human Metabolome Database, The Metabolomics Innovation Centre, Genome Canada. 11 February 2016. Retrieved 30 October 2016.

  20. Horowitz. R. M. and Gentili. B. (1969) Preparation of hesperetin dihydrochalcone glucoside, U. S. Patent 3, 429, 873.

    Google Scholar 

  21. Horowitz. R.M., and Gentili. B., (1971). Dihydrocholcones, Naringin and Hesperidin as Intense natural sweeteners in (ed) Birch, G.G., Green, L. RF coulson, C. B. Applied science publication Ltd. London, p’69 – 80.

    Google Scholar 

  22. Krasnobaev. V., (1974). Immobilized hesperidinase I hesperetin in hesperetin dihydrochalcone glucoside manufacture, Ger. Offen. 2,402,221[Chem, Abstr. 82:15272 (1975)].

    Google Scholar 

  23. Inglett. G.E., Krbechek. L., Dowling. B., and Wangner. R., (1969). Dihydrochalcone sweeteners sensory and stability evaluation, J. Food Sci., 34: 101 – 103.

    Google Scholar 

  24. Inglett, G. E. (1971). Intense sweeteners of natural origin. In (Ed) Birch, G.G, Green L.F. & courson CB. Applied Science Publication Ltd. London – p 32 – 41.

    Google Scholar 

  25. Guadagnik, D. G., Maier, V. P., and Tumbaugh, J. H., (1974). Some factors affecting sensory thresholds and relative bitterness of limonin and naringin, J. Sci. Food Agric., 25: 1199-1205.

    Article  Google Scholar 

  26. Givanudan L. et Cie S.A., Sweetener composition. Netherlands Patent Appl. 74 12, 072 (April 8, 1975) [Chem. Abstr., 83: 204966.

    Google Scholar 

  27. Inglett, G. E. (1981) sweeteners: a review: Food Technology 35(3), 37 – 41.

    CAS  Google Scholar 

  28. Crosby G. A., and Furia, T. E. (1980). New sweeteners, in CRC Handbook of Food Additives, 2nd ed., vol. II (T. E. Furia, ed.), CRC Press, Inc., Boca Raton, Fla., 1980, p. 204.

    Google Scholar 

  29. Westall, E. B., and Messing, A.W., (1977). Salts of dihydrochalcone derivative and their use as sweeteners, U. S. Patent 4,031, 260.

    Google Scholar 

  30. Peterson, J. J., Beecher, G. R., Bhagwat, S. A. et al. (2006). Flavonones in grape fruit, lemons and limes. A compilation and Review data from analytical liter euere. J. Food composition and Analysis. 19, (Supplement) 574 – 580.

    Google Scholar 

  31. Gutierrez, RMP, Ramirez, A.M. and sauced J.V. (2015). Review the potential of chalcones as a source of drugs. African J. Pharm. And pharmacol 9(8), 237 – 257.

    Article  CAS  Google Scholar 

  32. Belofsky G, Percivill D, Lewis K, Tegos GP, Ktart J (2004). Phenolic metabolites of Dalea varsicolor that enhance antibiotic activity against model pathogenic. J. Nat. Prod. 67:481-484.

    Article  CAS  PubMed  Google Scholar 

  33. De Bernonville TD, Guyot S, Paulin J. Gaucher M, Loufrani L, Henrio D, Debre S, Guilet D, Richomme P, Dat JF, Briset M (2010). Dihydrochalcones: Implication in resistnce to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71:443-452.

    Google Scholar 

  34. Szliszka E, Czuba ZP, Mazur B, Paradysz A, Krol W (2010). Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer Cells. Molecules 15:5336-5353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song, Jung-Kook; Bae, Jong-Myon (2013 – 03 -01). “Citrus fruit intake and breast cancer risk: a quantitative systematic review” (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625773). Journal of Breast Cancer. 16(1): 72-76. doi:10.4048/jbc.2013.16.1.72 (https://doi.org/10.4048%2Fjbc.2013.16.1.72). ISSN 1738-6756 (https://www.wroldact.org/issn/1738-6756). PMC 3625773 (https:www.ncbi.nlm.nih.gov/pmc/articles/PMC3625773). PMID 23593085 (https://pubmed.ncbi.nlm.nih.gov/23593085).

  36. Gonzalez CA, Sala N, Rokka T (2013). “Gastric cancer: epidemiologic aspects”. Helicobacter. 18(Supplement 1): 34 – 38. doi:10.1111/hel.12082(https://doi.org/10.1111%2Fhel.12082). PMID 24011243 (https://pubmed.ncbi.nlm.nih.gov/24011243).

  37. Seo SY, Sharma VK, Sharma N (2003). Mushroom tyrosinase: recent prospects. J. Agric. Food Chem. 51:2837-2853.

    Article  CAS  PubMed  Google Scholar 

  38. Pratter, P. J., (1981) Neohespridin dihydrochalcone, Perfum. Flavor, 5: 12 – 18.

    CAS  Google Scholar 

  39. Gumbamann. M.R., Gould. D. H., Robbins. D. J., and Booth. A. N.,(1978) Toxicity studies of neohesperidin dihydrochalcone, Proceedings, Sweeteners and Dental Caries (J. H. Shaw, and G. G. Roussos, eds.). Information Retrieval, Inc., Washington D.C. , pp., 301 – 310.

    Google Scholar 

  40. Booth. A. N., and Robbins, D. J., (1968) Dihydrochalcone subacute toxicity study in rats, U. S. department of Agriculture, Western Regional Research Laboratory, Report CA 74 – 18.

    Google Scholar 

  41. Berry. C. W. and henry. C. A., (1983) Baylor College of Dentistry, Meeting of the American Association for Dental Research, as reported in Food Chemical News, p. 25.

    Google Scholar 

  42. A polygenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus (http://mbe.oxfordjournals.org/content/early/2015/04/05/molbev.msv-82.full.pdf+html)

  43. Wu, GA, Terol J, Ibanez V, Lopez-Garcia A, Perez-Roman E, Borreda C, Domingo C, Tadeo FR, Carbonell-Caballero J, Alonso R, Curk F, Du D, Ollitrault P, Roose ML, Dopazo J, Gmitter FG, Rokhsar DS, Talon M (February 2018). “Genomics of the origin and evolution of Citrus”. Nature. 554(7692): 311-316.

    Article  CAS  PubMed  Google Scholar 

  44. Briggs, Helen (8 Feb 2018), “DNA Story of when life first gave us lemons,” BBC, https://www.bbc.com/news/science-environment-42960445, accessed 12 Feb. 2018.

  45. Velasco, Riccardo; Licciardello, Concetta (2014). “A genealogy of the citrus family”. Nature Biotechnology. 32(7): 640 – 642. doi:10.1038/nbt.2954(https://doi.org/10.1038%2Fnbt.2954).

    Google Scholar 

  46. Inglese, Paolo; Sortino, Giuseppe (2019). “Citrus History, Taxonomy, Breeding, and Fruit Quality”. Oxford Research Encyclopedia of Environmental Science.

    Book  Google Scholar 

  47. Citrus meletensis (Rutaceae), a new species from the Pliocene of Valdarno (Italy) Fischer, T. C. & Butzmann, Plant Systematics and Evolution – March 1998, Volume 210, Issue 1, pp 51 – 55. Doi. 10.1007/BF00984727.

    Google Scholar 

  48. Citrus linczangensis sp. n., a Leaf Fossil of Rutaceae from the Late Miocene of Yunnan, China by Sanping Xie, Steven R Manchester, Kenan Liu and Bainian Sun – International Journal of Plant Sciences 174(8): 1201 – 1207 October 2013.

    Google Scholar 

  49. Klein, Joshua D. (2014). “Citron Cultivation, Production and Uses in the Mediterranean Region”.Medicinal and Aromatic Plants of the Middle – East. Medicinal and Aromatic Plants of the Wrold. 2. pp. 199 – 214. doi.10.1007/978-94-017-9276-9_10 (https://doi.org/10.1007%2F978-94-017-9276-9_10).ISBN978-94-017-9275-2.

    Google Scholar 

  50. Andres Garcia Lor (2013). Organizacion de la diversidad genetic de los citricos (https://riunet.upv.es/bitstream/handle/10251/31518/Version3.Tesis%20Andres%20Garcia-Lor.pdf)

  51. Curk, Franck; Ollitrault, Frederique; Garcia-Lor, Andres: Luro, Francois; Navarro, Luis; Ollitrault, Patrick (2016). “Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers” (https://www.ncbi.nlm.nih.gov/pmc/artiicles/PMC4817432). Annals of Botany. 11(4): 565 – 583. doi:10.1093/aob/mcw005(https://doi.org/10.1093%2Ffaob%2Fmcw005). PMC 4817432 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817432). PMID 26944784 (https://pubmed.ncbi.nlm.nih.gov/26944784).

  52. Bayer, R. J., et al. (2009). A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cp DNA sequences. (http://www.amjbot.org/content/96/3/668.full) American Journal of Botany 96(3), 668 – 85.

  53. Fuller, Dorian Q., Castillo, Cristina; Kingwell-Banham, Eleanor; Qin, Ling; Weisskopf, Alison (2017). “Charred pomelo peel, historical linguistics and other tree crops: approaches to framing the historical context of early Citrus cultivation in East, South and Southeast Asia”. In Zech-Matterne, Veronique; Fiorentino, Girolamo (eds.). AGRUMED: Archaeology and history of citrus fruit in the Mediterranean. Publications du Centre Jean Berard. pp. 29 – 48.

    Google Scholar 

  54. Zech-Matterne, Veronique; Fiorentino, Girolamo; Coubray, Sylvie; Luro, Francois (2017). In Zech-Matterne, Veronique; Fiorentino, Girolamo (eds.) AGRUMED: Archaeology and history of citrus fruit in the Mediterranean: Acclimatization, diversification, uses. Publications du Centre jean Berard. ISBN 9782918887775.

    Google Scholar 

  55. Langgut, Dafna (June 2017). “The Citrus Route Revealed: From Southeast Asian into the Mediterranean”. Hort. Science. 52 (6): 814 – 822.

    Google Scholar 

  56. Blench, R. M. (2005). “Fruits and arboriculture in the Indo Pacific region” (https://www.researchgate.net/publication/255579031). Bulletin of the Indo-Pacific Prehistory Association. 24: 31 – 50.

  57. Langgut, Dafna (2017). “The history O” Citrus medica (citron) in the Near East: Botanical remains and ancient art and texts”. In Zech-Matterne, Veronique; Fiorentino, Girolamo (eds.) AGRUMED: Archaeology and history of citrus fruit in the Mediterranean. Publications du Centre Jean Berard. ISBN9782918887775.

    Google Scholar 

  58. Bhattacharya, S. C. and Dutta, S. (1956) ICAR Monograph No. 20.

    Google Scholar 

  59. Ghosh, S. P., (1985). Citrus (ed: Bose T. K.) Fruits of India Tropical and subtropical P158 – 218.

    Google Scholar 

  60. Henri, Chapot., (1950). “Un curieux cedrat Marocain” (http://www.persee.fr/web/revues/home/prescript/article/jatba_0370-5412_1950_num_30_335_6729).

  61. Horowitz, R. M. and Gentiti, B (1979) in Health and Sugar substitutes (ed. Zurich, B.G.), S. Korgar, New York pp 166 – 171.

    Google Scholar 

  62. Anonymous; (1948 – 1976) wealth of India. Row materials (1 – x) CSIR, New Delhi.

    Google Scholar 

  63. Isima, V. and Kakayema (1997) chemical abstract. 87, 1827.

    Google Scholar 

  64. Diwedi, R. S., 1999. Un nurtured and untapped super sweet non sacchariferous super sweet plants of India. Current Sciences 76(11), 1454 – 1461.

    Google Scholar 

  65. Randhawa, N. S., Bhumla, D. R. and Dhingra, D. R. (1967) J. Res. Punjab Agric. Univ., Ludhiana, 4: 16 – 24.

    Google Scholar 

  66. Rao, D. G., Pandey, P. K., Chackraborty, N. K. and Capoor, S. P. (1975) Indian J. HOrt. 32: 117 – 23.

    Google Scholar 

  67. Deole, D. G., Joshie, A. T. and Deshmukh, P. P. (1977) Inter. Symp. Citriculutre, Bangalore, p. 10.

    Google Scholar 

  68. Singh, R. and Singh, R. (1981) Nat. Symp. Trop. And Subtrop. Fruit Crops, p. 43.

    Google Scholar 

  69. Singh, K. K., Grewal, K. S. and Jawanda, J. S. (1961) Indian J. Hort. J., 1: 135-40.

    Google Scholar 

  70. Sethi, S. L. (1967) J. Econ. Ent., 60: 180 – 1.

    Article  CAS  Google Scholar 

  71. Schwarz, R. E. (1968) (Ed) 4th Conf. Internat. Organ. Citrus Virol. Proc., 1966, 188 – 27.

    Google Scholar 

  72. Chohan, G. S., Nauriyal, J. P. and Bakshi, J. C. (1966) Punjab Hort. J., 6: 56 – 61.

    Google Scholar 

  73. Jawanda, J. S. Arora, J. S., and Sharma, J. N. (1973) Punjab HOrt. J., 13: 3 – 12.

    Google Scholar 

  74. Barmaere, C. R. and Grierson, W. (1983) Proc. XXIst Int. Hort. Congress, Hamburg, 396 – 406.

    Google Scholar 

  75. Ben – Yehoshua, S. (1978) Proc. Int. Soc. Citriculture, pp. 110 – 5.

    Google Scholar 

  76. Sheu, Scott. “Foods Indigenous to the Western Hemisphere: Grapefruit” (https://web.archive.org/web/20100818035403/http://www.aihd.ku.edu/foods/grpefruit.html). American Indian Health and Diet Project. Aihd.ku.edu.Archived from original (http://www.aihd.ku.edu/foods/grapefruit.html) on 2010 – 08 – 18.

  77. Carr, Jackie (22 April 2010). “Five Ways to Prevent Kidney Sones” (https://web.archive.org/web/20101120091049/http://health.ucsd.edu/news/2010/4-22-kidney-stones.htm) on 20 November 2010. Retrieved 2010 -12 – 03.

  78. McGovern, Thomas W.; Barkley, Theodore M. (2000). “Botanical Dermatology” (http://telemedicine.org/botanical/bot1.htm). The Electronic Textbook of Dermatology. Internet Dermatology Society. Section Phytophotodermatitis (http://telemedicine.org/botanica/bot5.htm). Retrieved November 29, 2018.

  79. Dugrand-Judek, Audray; Olry, Alexandre; Hehn; Costantion, Gilles; Ollitrault, Patrick; Froelicher, Yann; Bourgaud, Frederic (November 2015). “The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways” (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641707). PLOSONE. 10(11): e0142757. Bibcode:2015PLoSO..10427557D (https://ui.adsabs.harvard.edu/abs/2015PLoSO..1042757D). doi:10.1371/journal.pone.0142757 (https://doi.org/10.1371%2Fjournal.pone.0142757). PMC 4641707(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641707). PMID26558757 (https://pubmed.ncbi.nlm.nih.gov/26558757).

  80. Nigg, H. N.; NOrdby, H. E.; Beier, R. C.; Dillman, A.; Macias, C.; Hansen, R. C. (1993). “Phototoxic coumarins in lines” (https://eurekamag.com/pdf/002/002671183.pdf). Food Chem Toxicol. 31(5): 331 – 35. doi:10.1016/0278-6915(93)90187-4 (https://doi.org/10.1016%2F0278-6915%2893%2990187-4). PMID 8505017 (https://pubmed.ncbi.nlm.nih.gov/8505017).

  81. “Toxicological Assessment of Furocoumarins in Foodstuffs” (http://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahmen/2006/sklm_furocoumarine_en_2006.pdf) . The German Research Foundation (DFG). DFG Senate Commission on Food Safety (SKLM). 2004. Retrieved November 1, 2018.

  82. Wagner, A. M.; Wu, J. J.; Hansen, R. C.; Nigg, H. N.; Beiere, R. C. (2002). “Bullous phytophotodermatitis associated with high natural concentrations of furanocoumarins in limes”. Am J Contact Dermat. 13(1): 10 – 14. doi: 10. 1053/ajcd.2002.29948 (https://doi.org/10.1053%2Fajcd.2002.29948). ISSN 0891 – 5849 (https://www.worldcat.org/issn/0891-5849). PMID 11887098 (https://pubmed.ncbi.nlm.nih.gov/11887098).

  83. Lance, W. , (1996). Citrus: complete guide to selecting and growing more than 100 varietis of California, Arizona, Texas the Gulfcoast and Florida. Tucson Ariz: Iron wood press. ISBN978 – 0 – 9628236 – 4 – 0.OCLC 34116821.

    Google Scholar 

  84. Rennie, E.H. (1886) Glycyphyllin, the sweet principle of smilax glycyphylla. J.Chem. Soc.Transaction,49, 857-865

    Google Scholar 

  85. Write, A.C.R. and Rennie, E.H.(1881)J.Chem. soc. Transaction. p237.

    Google Scholar 

  86. Horowitz, R.M and Gentili, B(1974) in Sweetners (ed. Inglett,G.E), Avia.Pub.wetport,com,16-27.

    Google Scholar 

  87. Salas-Coronado,Ratil et al(2017)Phenolic compounds in genus Smilax(Sarsaparilla) in (Ed) Marcos Soto-Hernandez et al:Inter open DOI:10,5772/66896. Available from htts://www.intechopen.com/book/Phenoliccompound-natural sources,importance and application: in genus smilax sarsaparilla.

  88. Williams, A.H. (1967) Phytochemistry,6,15834.

    Google Scholar 

  89. Esaki,S,Abe, M., Shiba, N and Kamiya, S.(1990) synthesis of Glycyphyllin. Agri. Biol.Chem. 54(6),1583-1585.

    Google Scholar 

  90. Cox, S.D.,Jayasinghea,K.C., and Markhama, J.L.,(2005) Antioxidant activity in Australian native sarsaparilla(Smilax glyciphylla), Journal of Ethnopharmacology, Vol.101(1-3)162-163.

    Google Scholar 

  91. Copy of letter received by Dr Anthony Hamilton from Dennis Considen, 18 November, 1788, amd sent onto Joseph Banks.[1](http://www2.sl.nsw.gov.au/banks/series_23/23_26.cfm)

  92. Smith,J.E(1790)Journal of Voyage to New South Wales:230.

    Google Scholar 

  93. Lassak, EV and Mc Karthy, T (1983), Australian medicinal plants. Methuan , Australia. ISBN 0-454.00438.9

    Google Scholar 

  94. White, M (2015)Ark of taste to the rescue of our endangered food. The Sunday Morning Herald, Nov 5,2015,1:18pm

    Google Scholar 

  95. Annoymous(1948-1976) Wealth of India. Raw materials(I-X)CSIR,New Delhi, India.

    Google Scholar 

  96. Dwivedi,R.S(1999) Un Nurtured and untapped super sweet plant species in India. Current Science76(11),1154-1161.

    Google Scholar 

  97. Pub medcitation(PubChem) (2013 Oct) Examination phenolic profile & antioxidant activities of Australian native plant. S.glyciphylla. MPID 24050300: J.Natural Product 76(10),1932-1936.

    Google Scholar 

  98. Smilax glyciphyila plant profile, PlantNET(http://plantnet.rbgsyd.new.gov.au/cgi-bin/NSW.pl?page=nswfl&lvl=sp&name=Smilax~glyciphylla)

  99. Sheperd, T.W(1871) Smilax glyciphylla-Noosas Native plants. Retrieved from http://noosasnativeplants.com.au./plants/447/smilax-glyciphylla.

    Google Scholar 

  100. White,J.Journal of Voyage to New South wales,(http://gutenberg.net.au/ebooks03/0301531h.html)

  101. Hegnauer, R., Chemotaxonomie der Pflanzen, vol 2, Birkhauser Verlag, Basel, 1963.

    Book  Google Scholar 

  102. Jia, Honghua and 6 more: Dec 2008. Trilobatin consumables. Pub. No. WO2008148239 A1, Application No. PCT/CH2008/000253, Google patent. (https//www.google.com/patent/wo2008148239A1

  103. Trilobatin 1980 – 2017. The Good scets company (tgsc) http://www.thegoodscentcompany.com/data/rw1616021.htm/#tosafly. (isolated from apple leaves p. 1 – 13).

  104. Horowitz, RM, Gentili, B. Dihydrochalcone derivatives and their use as sweetening agents. US Patent, 1952, 3087821.

    Google Scholar 

  105. Williams AH. Dihydrochalcones of Malus species. J Chem Soc. 1961; 4136. [Crossref], [web of Science].

    Google Scholar 

  106. Kurahayashi, K., Hanaya, K., Higashibayashi, S., & Sugal, T., (2018). Synthesis of trilobatin form naringin via pruning as the key intermediate: acidic hydrolysis of the α-rhamnosidic linkage in naringin under improved conditions. Biosciece, Biotechnology, and Biochemstry, 82 (9) p. 1463 – 1467.

    Article  CAS  Google Scholar 

  107. Tang MJ, Zhao J., Li XH, Yu SS. China J. Chin. Mater. Med. 29, 390 (2004).

    CAS  Google Scholar 

  108. Fu GM, Wang YH, Gao S, Tang, MJ; Yu SS. Five New cytotoxic triterpenoid Symplocos

    Google Scholar 

  109. Dhaon, R., Jain, G. K., Sarin, J.P.S., Khanna, Titra, T. Itoh, Y. Kanko, T., et al. (2004). corosilic acid induces GLUT4 trans & location in genetically type 2 diabetes mice. Bio. Pharm. Bull. 27(7): 1103 – 1105.

    Google Scholar 

  110. Fu, L., Xu B.T., Xu, XR. Oin, X S. Gan, R.Y. Li, HB. (2010) Fantixidaf capacityes and spotal phenolic contents of 56 wild fruits from South China. Molecules 15: 8602 – 8617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao, J., Liu, S., Xu, F. et al 2018. Trilobatin protects against oxidative injury in Neuronal PC12 cells through regulating mitochondrial ROS homeostasis mediated by AMPK/Nrf2/Sirt3 signaling pathway. Front Mol. neurosci., 30 July 2018 https://doi.org/10.3389/fnmol.2018.00267

    Google Scholar 

  112. Dandiya PC, Chopra YM, Banerjee SP. Indian Journal of Pharmacy, 1966; 28:344.

    Google Scholar 

  113. Thuong PT. Min BS, Jin W, et al., Anti complementary activity of Ursane type tri terpenoids from Weigela Subsessilis. Biol Pharm Bull, 2006;29(4):830-833.

    Article  CAS  PubMed  Google Scholar 

  114. Semwal RB, Semiwal DK, Semwal R., Singh, R., Rawat MSM. (2011). Chemical constituents from the stem bark of Symplocos paniculata Thumb with antimicrobial, analgesic and anti inflammatory activities. Journal of Ethnopharmacology, 135: 78 – 87.

    Article  CAS  PubMed  Google Scholar 

  115. Kunitomo, M. (2007) oxidative stress and other sclerosis, 127, (12), 1997 – 2014.

    Google Scholar 

  116. Jang DS, Lee GY, Kim J. et. al.(2008). A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm. Res. 31(5): 666-670.

    Article  CAS  PubMed  Google Scholar 

  117. Yamada K, Hosokawa M., Fujimoto S, et al. (2008). Effect of corosolic acid on gluconegenes in rat liver. Diabetes Res. Clin Pract. In vivo anti inflammatory and analgesic activities of purified saponin fraction derived from the root of llex pubescens. Biological and Pharmaceutical Bulletin 31, 643 – 650.

    Article  Google Scholar 

  118. Kusuma, G., Vijaya, B., and Chitra, S., (2018). Symplocos paniculata Miq. – A Review Int. J. Curr. Res. Bio.sci. Plant Biology, 5(3), 7 – 20.

    Google Scholar 

  119. Li, XH., Shen, DD, Li, N and Yu, SS(2003) Bioactive triterpenoids from S.Chinensis.J.Asian, Nat.Prod.Res.5:49-56.

    Google Scholar 

  120. Wang, Y., Fritssh, P.W., Shi, S, et al (2004) Polygeny and intrageeric classification of symplocos inferred from DNA sequence data American J. Botany 91(11), 1901 – 1914.

    Article  CAS  Google Scholar 

  121. Bean W.Trees and Shrubs Hardy in Great Britain. Vol.1-4 and Supplement. Murray 1981.

    Google Scholar 

  122. Sapphire Berry Blue berry of special Brilliancs. Jan 2018. http://www.zone10.com/sapphire/berry-blue-berries-of-special-brilliance.html.

  123. Vincent , M.A., Gardner, R.L. and Riley, B.P. (2011)Addition to and interesting records for Ohio vascular flora(with on new record for Indiana). Phytoneuron 60,123. ISSN 2153-733X.

    Google Scholar 

  124. Sheat WG. Propagation of Trees, Shrubs and Conifers. MacMilan and Co.1948.

    Google Scholar 

  125. Missouri Botanical garden Jan 2018. Symplocos paniculata plant finder. http://wwwmissouribotanicalgarden.org/plantfinder/plantfinderdetails. as px? taxonid = 287290 & isprobile = 0 &.

  126. Plants for future: Symplocos paniculata, sapphire berry, PFAF plant database – Jan 2018, http//www.org/use/plant.aspx? latin name – symplocos + paniculala.

  127. Tang D, Shen Hu, S Gao, Yu. Cytotoxic triterpenoid saponins from Symploeos chinensis. J. (2004). Nat. Prod. 67, 1969.

    Google Scholar 

  128. Naveen, K., Jangwan JS. Phytoconstituents of Symplocos paniculata (leaves). Journal of current chemical and Pharmaceutical Sciences. 2012; 2(1): 76 – 80.

    Google Scholar 

  129. Earle et al., Journal of American oil chem. Society, 1960; 37: 440.

    Google Scholar 

  130. Na, M. Yang, S., He, L., Oh, Kim, B.S. Oh, W. K., Kim, B.Y., Ahn, J. S., 2006 Inhibition of protein tyrosine isolated from Symplocos paniculata. Planta Medica 261 – 263.

    Google Scholar 

  131. Lida, I., Hayashi, Maruta, T. Ono, M; Inoue K., Fujita T. (1990). J., Chromotogr. 515, 503 – 509.

    Google Scholar 

  132. Badoni, R., Samwal, DK., Sudhir, K., Kothiyala, SK., Rawat, U.,(2010). Chemical constituents and biological applications of the genes Symplocos. Journal of Asian Natural Products Research,;12(12)1069-1080.

    Google Scholar 

  133. Huxley A. The new RHS Dictionary of Gardening. Macmillan Press, 1992.

    Google Scholar 

  134. Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol. II, 2nd Ed. 1510 – 1511.

    Google Scholar 

  135. Srivastava DN, Bhatt KR. Indian J. Indigen. Med, 1993;10:23.

    Google Scholar 

  136. The Ayurvedic Formulary of India, Part I, 2nd Edition, Government of India, New Delhi, 2003; p.57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Dihydrochalcones Flavonoid Super Sweet Principles. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_10

Download citation

Publish with us

Policies and ethics