Skip to main content

Change in Propagation Constant with Molar Fraction and Other Performance Analysis the Sensitivity of Optical Fiber Sensor in COMSOL Multiphysics

  • Conference paper
  • First Online:
Proceedings of Integrated Intelligence Enable Networks and Computing

Abstract

This paper presents the change in propagation constant with a molar fraction of silicon nanowire to check their sensitivity. A modal answer approaches the powerful, finite part methodology (FEM) employing a full-vectorial H-field formulation that has been accustomed to verifying the single-mode operation. The modal answer of the elemental space-filling mode has conjointly been obtained to spot the cutoff conditions of the conductor modes. Here, the power fraction of the sensing arm as a function of the fiber radius for a specimen index is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.I. Abdul Rashid, J. Abdullah, N.A. Yusof, R. Hajian, The development of silicon nanowire as sensing material and its applications. J. Nanomaterials 2013(328093), 16 (2013)

    Google Scholar 

  2. G. Tian, K. Pan, Y. Chen et al., Vertically aligned anatase TIO2 nanowire bundle arrays: use as Pt support for counter electrodes in dye-sensitized solar cells. J. Power Sources 238, 350–355 (2013)

    Article  Google Scholar 

  3. F. Shahdost-fard, A. Salimi, E. Sharifi, A. Korani, Fabrication of a highly sensitive adenosine aptasensor based on covalent attachment of aptamer onto chitosan-carbon nanotubes-ionic liquid nanocomposite. Biosens. Bioelectron. 48, 100–107 (2013)

    Article  Google Scholar 

  4. L. Qian, J. Mao, X. Tian, H. Yuan, D. Xiao, In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sens. Actuators B 176, 952–959 (2013)

    Article  Google Scholar 

  5. Y. Ding, Y. Liu, J. Parisi, L. Zhang, Y. Lei, A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 28(1), 393–398 (2011)

    Article  Google Scholar 

  6. Y. Sun, S.H. Yang, L.P. Lv et al., A composite film of reduced graphene oxide modified vanadium oxide nanoribbons as a free standing cathode material for rechargeable lithium batteries. J. Power Sources 241, 168–172 (2013)

    Article  Google Scholar 

  7. H. Lee, J. Hong, S. Lee, S.D. Kim, Y.W. Kim, T. Lee, Selectively grown vertical silicon nanowire p − n + photodiodes via aqueous electroless etching. Appl. Surf. Sci. 274, 79–84 (2013)

    Article  Google Scholar 

  8. A. Gao, N. Lu, P. Dai et al., Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 11(9), 3974–3978 (2011)

    Article  Google Scholar 

  9. J.Y. Oh, H.Y. Jang, W.J. Cho, M.S. Islam, Highly sensitive electrolyte-insulator semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane. Sens. Actuators B 171, 238–243 (2012)

    Article  Google Scholar 

  10. J. Bae, H. Kim, X.M. Zhang, Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters. Nanotechnology 21(095502), 21 (2010)

    Google Scholar 

  11. P.K. Kim, S.J. Cho, J. Sung, H.S. Oh, G. Lim, Bio-molecules detection sensor using silicon nanowire, in Proceedings of SPIE the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, vol 7493 (SPIE, Weihai, China, 2009)

    Google Scholar 

  12. J.H. Choi, H. Kim, H.S. Kim et al., MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction. J. Biomed. Nanotechnol. 9, 732–745 (2013)

    Article  Google Scholar 

  13. A.A. Talin, L.L. Hunter, F. Ĺonard, B. Rokad, Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 89(15), Article ID 153102 (2006)

    Google Scholar 

  14. K.-I. Chen, B.-R. Li, Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)

    Article  Google Scholar 

  15. O.A. Sadik, S.K. Mwilu, A. Aluoch, Smart electrochemical biosensors: from advanced materials to ultrasensitive devices. Electrochim. Acta 55(14), 4287–4295 (2010)

    Article  Google Scholar 

  16. J.M. Senior, Optical Fiber Communications Principles and Practice, 3rd edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Masuda Binta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binta, S.M., Miah, A.S.M., Ferdous, M.M.F., Hossain, I., Habib, S. (2021). Change in Propagation Constant with Molar Fraction and Other Performance Analysis the Sensitivity of Optical Fiber Sensor in COMSOL Multiphysics. In: Singh Mer, K.K., Semwal, V.B., Bijalwan, V., Crespo, R.G. (eds) Proceedings of Integrated Intelligence Enable Networks and Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6307-6_92

Download citation

Publish with us

Policies and ethics