Skip to main content

Abstract

In this chapter, we explore various chemical interactions as well as modifications of graphene-based nanomaterials (mostly carbon dots and graphene quantum dots) toward enhancement of their properties. The properties include optical, photophysical, and chemical that determine their modifications for various applications. The chapter will provide an overview of general modifications done on graphene-based nanomaterials to achieve better functionality in terms of enhanced fluorescence, stability, intermediary functionalization for chemotherapeutic drugs, or even imparting biocompatibility of nanomaterials in cells. In the end, we discuss parameters that govern toxicity of such graphene-based nanomaterials in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avinash, M. B., Subrahmanyam, K. S., Sundarayya, Y., & Govindaraju, T. (2010). Covalent modification and exfoliation of graphene oxide using ferrocene. Nanoscale, 2, 1762–1766.

    Article  CAS  Google Scholar 

  • Bei, H. P., Yang, Y., Zhang, Q., Tian, Y., Luo, X., Yang, M., et al. (2019). Graphene-based nanocomposites for neural tissue engineering. Molecules, 24, 658.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Saha, S., Dhanak, V. R., Biswas, K., Barbezat, M., Terrasi, G. P., et al. (2016). High yield synthesis of amine functionalized graphene oxide and its surface properties. RSC Advances, 6, 67916–67924.

    Article  CAS  Google Scholar 

  • de Sousa, M., Martins, C. H. Z., Franqui, L. S., Fonseca, L. C., Delite, F. S., Lanzoni, E. M., et al. (2018). Covalent functionalization of graphene oxide with d-mannose: Evaluating the hemolytic effect and protein corona formation. Journal of Materials Chemistry B, 6, 2803–2812.

    Article  Google Scholar 

  • Feng, T., Ai, X., An, G., Yang, P., & Zhao, Y. (2016). Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano, 10, 4410–4420.

    Article  CAS  Google Scholar 

  • Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., et al. (2012). Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112, 6156–6214.

    Article  CAS  Google Scholar 

  • Georgakilas, V., Tiwari, J. N., Kemp, K. C., Perman, J. A., Bourlinos, A. B., Kim, K. S., et al. (2016). Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chemical Reviews, 116, 5464–5519.

    Article  CAS  Google Scholar 

  • Hai, X., Mao, Q.-X., Wang, W.-J., Wang, X.-F., Chen, X.-W., & Wang, J.-H. (2015). An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. Journal of Materials Chemistry B, 3, 9109–9114.

    Article  CAS  Google Scholar 

  • Jonathan, B., & Jude, C. (2019). Facile Synthesis of Formate-Functionalized Graphene Quantum Dots.

    Google Scholar 

  • Jung, H. S., Kong, W. H., Sung, D. K., Lee, M.-Y., Beack, S. E., Keum, D. H., et al. (2014). Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano, 8, 260–268.

    Article  CAS  Google Scholar 

  • Karthik, P., Vinoth, R., Zhang, P., Choi, W., Balaraman, E., & Neppolian, B. (2018). π–π interaction between metal-organic framework and reduced graphene oxide for visible-light photocatalytic H2 production. ACS Applied Energy Materials, 1, 1913–1923.

    Article  CAS  Google Scholar 

  • Kim, T.-H., Shah, S., Yang, L., Yin, P. T., Hossain, M. K., Conley, B., et al. (2015). Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano, 9, 3780–3790.

    Article  CAS  Google Scholar 

  • Kim, T. K., Cheon, J. Y., Yoo, K., Kim, J. W., Hyun, S.-M., Shin, H. S., et al. (2013). Three-dimensional pillared metallomacrocycle–graphene frameworks with tunable micro- and mesoporosity. Journal of Materials Chemistry A, 1, 8432–8437.

    Article  CAS  Google Scholar 

  • Kumawat, M. K., Thakur, M., Bahadur, R., Kaku, T., Prabhuraj, R. S., Ninawe, A., et al. (2019). Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Materials Science and Engineering C, 103, 109774.

    Article  CAS  Google Scholar 

  • Li, Q., Zhang, S., Dai, L., & Li, L.-S. (2012). Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 134, 18932–18935.

    Article  CAS  Google Scholar 

  • Li, X., Zhou, Z., Lu, D., Dong, X., Xu, M., Wei, L., et al. (2014). The effect of pristine carbon-based nanomaterial on the growth of green gram sprouts and pH of water. Nanoscale Research Letters, 9, 583.

    Article  CAS  Google Scholar 

  • Liu, Y., Jiang, L., Li, B., Fan, X., Wang, W., Liu, P., et al. (2019). Nitrogen doped carbon dots: Mechanism investigation and their application for label free CA125 analysis. Journal of Materials Chemistry B, 7, 3053–3058.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, J., Zhu, E., Tang, J., Liu, X., & Tang, W. (2015). Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. Journal of Materials Chemistry C, 3, 1011–1017.

    Article  CAS  Google Scholar 

  • Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130, 10876–10877.

    Article  CAS  Google Scholar 

  • Lolak, N., Kuyuldar, E., Burhan, H., Goksu, H., Akocak, S., & Sen, F. (2019). Composites of palladium-nickel alloy nanoparticles and graphene oxide for the knoevenagel condensation of aldehydes with malononitrile. ACS Omega, 4, 6848–6853.

    Article  CAS  Google Scholar 

  • Maciel, I. O., Campos-Delgado, J., Cruz-Silva, E., Pimenta, M. A., Sumpter, B. G., Meunier, V., et al. (2009). Synthesis, electronic structure, and raman scattering of phosphorus-doped single-wall carbon nanotubes. Nano Letters, 9, 2267–2272.

    Article  CAS  Google Scholar 

  • Marinoiu, A., Raceanu, M., Carcadea, E., Varlam, M., & Stefanescu, I. (2019). Iodinated carbon materials for oxygen reduction reaction in proton exchange membrane fuel cell. Scalable synthesis and electrochemical performances. Arabian Journal of Chemistry, 12, 868–880.

    Article  CAS  Google Scholar 

  • Markovic, Z. M., Ristic, B. Z., Arsikin, K. M., Klisic, D. G., Harhaji-Trajkovic, L. M., Todorovic-Markovic, B. M., et al. (2012). Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 33, 7084–7092.

    Article  CAS  Google Scholar 

  • Navaee, A., & Salimi, A. (2015). Efficient amine functionalization of graphene oxide through the Bucherer reaction: An extraordinary metal-free electrocatalyst for the oxygen reduction reaction. RSC Advances, 5, 59874–59880.

    Article  CAS  Google Scholar 

  • Park, J., Kim, B., Han, J., Oh, J., Park, S., Ryu, S., et al. (2015). Graphene oxide flakes as a cellular adhesive: Prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano, 9, 4987–4999.

    Article  CAS  Google Scholar 

  • Park, J., & Yan, M. (2013). Covalent functionalization of graphene with reactive intermediates. Accounts of Chemical Research, 46, 181–189.

    Article  CAS  Google Scholar 

  • Pei, X., Zhu, Z., Gan, Z., Chen, J., Zhang, X., Cheng, X., et al. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports, 10, 2717.

    Article  CAS  Google Scholar 

  • Qi, X., Yan, X., Peng, W., Zhang, J., Tong, Y., Li, J., et al. (2019). Graphene-induced hierarchical mesoporous MgO for the Claisen-Schmidt condensation reaction. New Journal of Chemistry, 43, 4698–4705.

    Article  CAS  Google Scholar 

  • Qian, Z., Ma, J., Shan, X., Shao, L., Zhou, J., Chen, J., et al. (2013). Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Advances, 3, 14571–14579.

    Article  CAS  Google Scholar 

  • Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., et al. (2011). Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 133, 6825–6831.

    Article  CAS  Google Scholar 

  • Shangguan, J., Huang, J., He, D., He, X., Wang, K., Ye, R., et al. (2017). Highly Fe(3 +)-selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Analytical Chemistry, 89, 7477–7484.

    Article  CAS  Google Scholar 

  • Shen, X., Liu, Y., Pang, Y., & Yao, W. (2013). Conjugation of graphene on Au surface by π–π interaction and click chemistry. Electrochemistry Communications, 30, 13–16.

    Article  CAS  Google Scholar 

  • Su, Y. H., Wu, Y. K., Tu, S. L., & Chang, S.-J. (2011). Electrostatic studies of π–π interaction for benzene stacking on a graphene layer. Applied Physics Letters, 99, 163102.

    Article  CAS  Google Scholar 

  • Suzuki, N., Wang, Y., Elvati, P., Qu, Z.-B., Kim, K., Jiang, S., et al. (2016). Chiral graphene quantum dots. ACS Nano, 10, 1744–1755.

    Article  CAS  Google Scholar 

  • Thakur, M., Kumawat, M. K., & Srivastava, R. (2017). Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 7, 5251–5261.

    Article  CAS  Google Scholar 

  • Wang, S., Cole, I. S., & Li, Q. (2016). The toxicity of graphene quantum dots. RSC Advances, 6, 89867–89878.

    Article  CAS  Google Scholar 

  • Wang, W., Li, Y., Cheng, L., Cao, Z., & Liu, W. (2014). Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. Journal of Materials Chemistry B, 2, 46–48.

    Article  CAS  Google Scholar 

  • Wang, X., Cao, L., Yang, S.-T., Lu, F., Meziani, M. J., Tian, L., et al. (2010). Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angewandte Chemie International Edition, 49, 5310–5314.

    Article  CAS  Google Scholar 

  • Xu, X., Li, P., Zhang, L., Liu, X., Zhang, H.-L., Shi, Q., He, B., Zhang, W., Qu, Z., & Liu, P. (2017). Covalent functionalization of graphene by nucleophilic addition reaction: Synthesis and optical-limiting properties. Chemistry—An Asian Journal, 12, 2583–2590.

    Google Scholar 

  • Xue, B., Zhu, J., Liu, N., & Li, Y. (2015). Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction. Catalysis Communications, 64, 105–109.

    Article  CAS  Google Scholar 

  • Yang, F., Lecroy, G. E., Wang, P., Liang, W., Chen, J., Fernando, K. A. S., et al. (2016). Functionalization of carbon nanoparticles and defunctionalization—toward structural and mechanistic elucidation of carbon “quantum” dots. The Journal of Physical Chemistry C, 120, 25604–25611.

    Article  CAS  Google Scholar 

  • Yang, S.-T., Wang, X., Wang, H., Lu, F., Luo, P. G., Cao, L., et al. (2009). Carbon dots as nontoxic and high-performance fluorescence imaging agents. The Journal of Physical Chemistry C, 113, 18110–18114.

    Article  CAS  Google Scholar 

  • Yoon, H. J., Kim, T. H., Zhang, Z., Azizi, E., Pham, T. M., Paoletti, C., et al. (2013). Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nature Nanotechnology, 8, 735–741.

    Article  CAS  Google Scholar 

  • Yuan, X., Liu, Z., Guo, Z., Ji, Y., Jin, M., & Wang, X. (2014). Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Research Letters, 9, 108.

    Article  CAS  Google Scholar 

  • Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6, 537–544.

    Article  CAS  Google Scholar 

  • Zhang, L., Yu, J., Yang, M., Xie, Q., Peng, H., & Liu, Z. (2013). Janus graphene from asymmetric two-dimensional chemistry. Nature Communications, 4, 1443.

    Article  CAS  Google Scholar 

  • Zhang, Q., Jie, J., Diao, S., Shao, Z., Zhang, Q., Wang, L., et al. (2015). Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano, 9, 1561–1570.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, C., Shi, W., Wang, Z., Dai, L., & Zhang, X. (2007). Direct measurements of the interaction between pyrene and graphite in aqueous media by single molecule force spectroscopy: Understanding the π − π interactions. Langmuir, 23, 7911–7915.

    Article  CAS  Google Scholar 

  • Zhang, Z., Huang, H., Yang, X., & Zang, L. (2011). Tailoring electronic properties of graphene by π–π stacking with aromatic molecules. The Journal of Physical Chemistry Letters, 2, 2897–2905.

    Article  CAS  Google Scholar 

  • Zhao, G., & Zhu, H. (2020). Cation–π interactions in graphene-containing systems for water treatment and beyond. Advanced Materials, 1905756.

    Google Scholar 

  • Zhu, Y., Higginbotham, A. L., & Tour, J. M. (2009). Covalent functionalization of surfactant-wrapped graphene nanoribbons. Chemistry of Materials, 21, 5284–5291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R., Thakur, M., Kumawat, M.K., Bahadur, R. (2021). Physicochemical Properties and Toxicity Analysis. In: Next Generation Graphene Nanomaterials for Cancer Theranostic Applications . Springer, Singapore. https://doi.org/10.1007/978-981-33-6303-8_3

Download citation

Publish with us

Policies and ethics