Skip to main content

Promising COVID-19 Vaccines

  • Chapter
  • First Online:
Nanotechnology-COVID-19 Interface

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

  • 421 Accesses

Abstract

SARS CoV2 vaccines are classified as nucleic acid vaccines, vectored vaccines, recombinant protein vaccines, virus-like particles (VLPs), inactivated vaccines and live-attenuated vaccines (Callaway, Nature 580:576–577, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmageed MI, Abdelmoneim AH, Mustafa MI , Elfadol NM, Murshed NS, Shantier SW, Makhawi AM. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: an immunoinformatics approach. BioMed Res Int. 2020; 2683286.

    Google Scholar 

  • Ahn DG, Shin HY, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol. 2020; 30(3):313–24.

    Google Scholar 

  • Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52(4):583–9.

    Article  Google Scholar 

  • Arvin AM, Fink K, Schmid MA, Cathcaert A, Spreafico M, Havenar-Doughton C, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020. https://doi.org/10.1038/s41586-020-2538-8.

    Article  Google Scholar 

  • Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science. 2017;356:175–80.

    Article  ADS  Google Scholar 

  • Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): immunoinformatics approach. J Med Virol. 2020;92(6):618–31.

    Article  Google Scholar 

  • Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to sars coronavirus infection of mice induced by a soluble Recombinant polypeptide containing an n-terminal segment of the spike glycoprotein. Virology. 2005;334:160–5.

    Article  Google Scholar 

  • Callaway E. The race for coronavirus vaccines: a graphical guide: eight ways in which scientists hope to provide immunity to SARS-CoV-2. Nature. 2020;580:576–7.

    Article  ADS  Google Scholar 

  • Carter DC, Wright B, Gray Jerome W, Rose JP, Wilson E. A unique protein self-assembling nanoparticle with significant advantages in vaccine development and production. J Nanomater. 2020; 4297937.

    Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. Sars-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci. 2020;24:4016–26.

    Google Scholar 

  • Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Smith GE, Frieman MB. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169–74.

    Article  Google Scholar 

  • Coleman CM, Venkataraman T, Liu YV, Glen GM, Smith GE, Flyer DC, Frieman MB. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine. 2017;35(12):1586–9.

    Article  Google Scholar 

  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369:77–81.

    Article  ADS  Google Scholar 

  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine against SARS-CoV-2—preliminary report. New Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2022483.

    Article  Google Scholar 

  • Jain N, Shankar U, Majee P, Kumar A. Scrutinizing the SARS-CoV-2 protein information for the designing an effective vaccine encompassing both the T-cell and B-cell epitopes. 2020; https://doi.org/10.1101/2020.03.26.009209.

  • Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect. 2020;9:275–7.

    Article  Google Scholar 

  • Jin J, Tarrant RD, Bolam EJ et al. Production, quality control, stability, and potency of cGMP-produced plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. npj Vaccines 2018; 3:32.

    Google Scholar 

  • Joshi A, Joshi BC, Amin-ul Mannan M, Kaushik V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked. 2020;19:100338.

    Article  Google Scholar 

  • Kato T, Takami Y, Kumar Deo V, Park EY. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of middle east respiratory syndrome coronavirus using insect cells. J Biotechnol. 2019;306:177–84.

    Article  Google Scholar 

  • Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuang G, Gorcon A, Balmseda A, Haris E. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017; 358:929–32.

    Google Scholar 

  • Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, et al. Modulation of Dengue/Zika virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in Zika virus infection. Front Immunol. 2018;9:597.

    Article  Google Scholar 

  • Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol. 2004;78:4638–45.

    Article  Google Scholar 

  • Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. 2020; 9:72.

    Google Scholar 

  • Kuzmina NA, Younan P, Glichuk P, Ramanathan P, et al. Antibody-dependent enhancement of Ebola virus infection by human antibodies isolated from survivors. Cell Reports. 2018;24(1802–1815):e5.

    Google Scholar 

  • Lim M. Md Badruddoza AZ, Firdous J, Azad M, Adnan Mannan A, Ahmed Al-Hilal T et al. Engineered nanodelivery systems to improve DNA vaccine technologies. Pharmaceutics. 2020; 12:30.

    Google Scholar 

  • Linhares AC, Velázquez FR, Pérez-Schael I, Sáez-Llorens X, Abate H, Espinoza F et al. Human rotavirus vaccine study group. Efficacy and safety of an oral live attenuated human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in Latin American infants: a randomised, double-blind, placebo-controlled phase III study. Lancet. 2008; 371:1181–9.

    Google Scholar 

  • Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Sci. 2020;6:315–31.

    Article  Google Scholar 

  • Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z, Chen J, Hu Q, Wang H. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology. 2010;130(2):254–61.

    Article  Google Scholar 

  • Malathi B, Mona S, Devasena T, Kaliraj P. Immunopotentiating nano-chitosan as potent vaccine carter for efficacious prophylaxis of filarial antigens. Int J Biol Macromol. 2015;73:131–7.

    Article  Google Scholar 

  • Martin JE, Louder MK , Holman LA , Gordon IJ, Enama ME , Larkin BD , Andrews CA, Vogel L, Koup RA , Roederer M, Bailer RT , Gomez PL, Nason M, Mascola JR, Nabel GJ, Graham BS. VRC 301 study team. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine 2008; 26:6338–6343.

    Google Scholar 

  • Mullard A. COVID-19 vaccine development pipeline gears up. Lancet. 2020;395:1751–2.

    Article  Google Scholar 

  • Mulligan MJ, Lyke KE, Kitchin N et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020; 586, 589–93. https://doi.org/10.1038/s41586-020-2639-4.

  • Ngui EM, Hamilton C, Nugent M, Simpson P, Willis E. Evaluation of a social marketing campaign to increase awareness of immunizations for urban low-income children. World Mycotoxin J. 2015;114(1):10–5.

    Google Scholar 

  • Okba NM, Raj VS, Haagmans Bl. Middle east respiratory syndrome coronavirus vaccines: current status and novel approaches. Current Opin Virol. 2017; 23:49–58.

    Google Scholar 

  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.

    Article  Google Scholar 

  • Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707–8.

    Article  Google Scholar 

  • Pimentel TA, Yan Z, Jeffers SA, Holmes KV, Hodges RS, Burkhard P. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem Biol Drug Des. 2009;73(1):53–61.

    Article  Google Scholar 

  • Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev Vaccines. 2009;8:887–98.

    Article  Google Scholar 

  • Shah A, Marks PW, Hahn SM. Unwavering regulatory safeguards for COVID-19 vaccines. JAMA. 2020;324(10):931–2.

    Article  Google Scholar 

  • Shin MD, Shukla S, Chung YH Beiss V, Khim Chan S, Ortega-Rivera OA et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnol 2020; 15:646–55.

    Google Scholar 

  • Singh K, Mehta S. The clinical development process for a novel preventive vaccine: an overview. J Postgrad Med. 2016;62(1):4–11.

    Article  Google Scholar 

  • Stern PL. Key steps in vaccine development. Anals Allergy Asthma Immunol. 2020;125(1):17–27.

    Article  Google Scholar 

  • Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Commun. 2020;11:2601.

    Article  ADS  Google Scholar 

  • Tazehkand MN, Hajipour O. Evaluating the vaccine potential of a tetravalent fusion protein against coronavirus (COVID-19). J Vaccines Vaccin. 2020;11:412. https://doi.org/10.35248/2157-7560.20.11.412.

    Article  Google Scholar 

  • Ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3(7):e237.

    Article  Google Scholar 

  • Tetro JA. Microbes and infection. Is COVID-19 receiving ADE from other coronaviruses? 2020; 22:72–3.

    Google Scholar 

  • Thao, TTN, Labroussaa F, Ebart N, V’kovski P, Stalder H, Prottman J et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature. 2020; 582:561–5.

    Google Scholar 

  • Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Snf Infect. 2020;9:382–5.

    Article  Google Scholar 

  • Tirado SM, Yoon KJ. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003;16:69–86.

    Article  Google Scholar 

  • Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicenter phase II efficacy trial. Lancet Oncol. 2005;6:271–8.

    Article  Google Scholar 

  • Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020;94(5):e02015-e2019.

    Google Scholar 

  • Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monitor. 2020; 26:e924700-1–8.

    Google Scholar 

  • Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451:208–14.

    Article  Google Scholar 

  • World Health Organization. Causality assessment of an adverse event following immunization (AEFI). User manual for the revised WHO classification. World Health Organization. 2013; 1–43.

    Google Scholar 

  • Yoon CH, Cho JS. SARS vaccine nano-delivery system. 2010; Patent No: KR20100120473A.

    Google Scholar 

  • Yue H, Wei W, Fan B Yue Z, Wang L, Ma G, Su Z. The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacol Res. 2012; 65(2):189–97.

    Google Scholar 

  • Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W et al. Leveraging mRNAs sequences to express SARS-CoV-2 antigens in vivo. 2020; https://doi.org/10.1101/2020.04.01.019877.

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    Article  ADS  Google Scholar 

  • Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–54.

    Article  Google Scholar 

Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T. .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

T., D. (2021). Promising COVID-19 Vaccines. In: Nanotechnology-COVID-19 Interface. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-33-6300-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6300-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6299-4

  • Online ISBN: 978-981-33-6300-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics