Skip to main content

The Nanotechnology-COVID-19 Interface

  • Chapter
  • First Online:
Nanotechnology-COVID-19 Interface

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

  • 449 Accesses

Abstract

Though already marketed antiviral drugs are used in the research to treat SARS CoV2 infection, the FDA approved drug and vaccine is still under different phases of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham J. Passive antibody therapy in COVID-19. Nat Rev Immunol. 2020;20:401–3.

    Article  Google Scholar 

  • Ahmed EM, Solyman SM, Mohamed N, Boseila AA, Hanora A. Antiviral activity of Ribavirin nanoparticles against measles virus. Cell Mol Biol (Noisy-Le-Grand). 2018;64(9):24–32.

    Article  Google Scholar 

  • Akbarzadeh A, Kafshdooz L, Razban Z, Tbrizi AD, Rasoulpour S, Khalilov R. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif Cells Nanomed Biotechnol. 2017;46(2):263–7.

    Article  Google Scholar 

  • Akhtar S, Shahzad K, Mushtaq S, Ali I, Rafe HM Fazal-ul-Karim SM. Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO2) nanoparticles suitable for biological applications. Mater Res Express. 2019;6(10):105409

    Google Scholar 

  • Amirmahani N, Mahmoodi NO, Glangash MM, Ghavidast A. Advances in nanomicelles for sustained drug delivery. J Indus Eng Chem. 2017;55:21–34.

    Google Scholar 

  • Andresen H, Mager M, Griebner M, Charchar P, Todorova N, Bell N, Theocharidis G, Bertazzo S, Yarovsky I, Stevens MM. Single-step homogeneous immunoassays utilizing epitope-tagged gold nanoparticles: on the mechanism, feasibility, and limitations. Chem Mater. 2014;26(16):4696–704.

    Article  Google Scholar 

  • Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38.

    Article  Google Scholar 

  • Bai Y, Zhou Y, Liu H, Fang L, Liang J, Xiao S. Glutathione-stabilized fluorescent gold nanoclusters vary in their influences on the proliferation of pseudorabies virus and porcine reproductive and respiratory syndrome virus. ACS Appl Nano Mater. 2018;1(2):969–76.

    Article  Google Scholar 

  • Balagna C, Perero S, Percivalle EV, Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1:100006.

    Article  Google Scholar 

  • Boles M, Ling D, Hyeon T. et al. The surface science of nanocrystals. Nat Mater. 2016;(15):141–153.

    Google Scholar 

  • Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci. 2020;261:118336.

    Article  Google Scholar 

  • Borkow G, Zhou SS, Page T, Gabbay J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE. 2010;5(6):1–9.

    Article  Google Scholar 

  • Broglie J, Alston B, Yang C, Ma L, Adcock AF, Cheng W, Yang L. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS ONE. 2015;10(10):1–14.

    Article  Google Scholar 

  • Bruck A, Abu-Dahab R, Borchard G, Schäfer UF, Lehr CM. Lectin-functionalized liposomes for pulmonary drug delivery: interaction with human alveolar epithelial cells. J Drug Target. 2001;9(4):241–51.

    Article  Google Scholar 

  • Byrnes JR, Zhou XX, Lui I, Elledge SK, Glasgow JE, Lim SA, Loudermilk R, Chiu CY, Wilson MR, Leung KK, Wells JA. A SARS-CoV-2 serological assay to determine the presence of blocking antibodies that compete for human ACE2 binding. 2020;medRxiv. doi: https://doi.org/10.1101/2020.05.27.20114652.

  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.

    Article  Google Scholar 

  • Chan WCW. Nano research for COVID-19. ACS Nano. 2020;14(4):3719–20.

    Article  Google Scholar 

  • Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14(7):7760–82.

    Article  Google Scholar 

  • Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, Chen YI, Yao By, Hu CMJ. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials. 2016;106:111–118.

    Google Scholar 

  • Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Publ Health. 2016;13(4):430.

    Article  Google Scholar 

  • Coleman CM, Venkataraman T, Liu YV, Glenn GM, Smith GE, Flyer DC, Frieman MB. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine. 2017;35(12):1586–9.

    Article  Google Scholar 

  • Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SR. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm. 2014;11(6):1808–22.

    Article  Google Scholar 

  • Dhakal S, Hiremath J, Bondra K, Lakshmanappa YS, Shyu DL, Ouyang K, Kang K, Binjawadagi B, Goodman J, Tabynov K, Krakowka S, Narasimhan B, Lee CW, Renukaradhya GJ. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release. 2017;247:194–205.

    Article  Google Scholar 

  • Dorothea M, Maria A, Janice S, Teodora I, Yue Q, Antonella C, Roberto G. antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 2019;11(8):732–732.

    Article  Google Scholar 

  • Du F, Zhang M, Li X, Li J, Jiang X, Li Z, Hua Y, Shao G, Jin J, Shao Q, Zhou M, Gong A. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology. 2014;25(31):315702.

    Article  ADS  Google Scholar 

  • Du T, Cai KM, Han HY, Fang LR, Liang JG, Xiao SB. Probing the interactions of CdTe quantum dots with pseudorabies virus. Sci Rep. 2015;5:16403.

    Article  ADS  Google Scholar 

  • El-Atab N, Qaiser N, Badghaish H, Shaikh SF, Hussain MM. flexible nanoporous template for the design and development of reusable anti-COVID-19 hydrophobic face masks. ACS Nano. 2020;14(6):7659–65.

    Article  Google Scholar 

  • El-Lababidi RM, Mooty M, Bonilla MF, Salem NM. Treatment of severe pneumonia due to COVID-19 with PEG-interferon alfa 2a. ID Cases. 2020;21:e00837.

    Google Scholar 

  • Figueroa SM, Veser A, Abstiens K, Fleischmann D, Beck S, Goepferich A. Influenza A virus mimetic nanoparticles trigger selective cell uptake. Proc Natl Acad Sci. 2019;116(20):9831–6.

    Article  Google Scholar 

  • Friedman SH, DeCamp D, Sijbesma RP, Srdanov G, Wudl F, Kenyon G. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc. 1993;115(15):6506–9.

    Article  Google Scholar 

  • Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol. 2007;81(18):9812–24.

    Article  Google Scholar 

  • Fujimori Y, Sato T, Hayata T, Nagao T, Nakayama M, Nakayama T, Sugamata R, Suzuki K. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl Environ Microbiol. 2012;78(4):951–5.

    Article  Google Scholar 

  • Gajbhiye V, Palanirajan VK, Tekade RK. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharm. 2009;61:989–1003.

    Article  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16(10):8894–918.

    Article  Google Scholar 

  • Gaur PK, Mishra S, Bajpai M, Mishra A. Enhanced oral bioavailability of Efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. BioMed Res Int. 2014;Article ID 363404.

    Google Scholar 

  • Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8(39):66680–98.

    Article  Google Scholar 

  • Ghosh S, Firdous SM, Nath A. SiRNA could be a potential therapy for COVID-19. EXCLI Journal. 2020;19:528–31.

    Google Scholar 

  • Gong P, He X, Wang K, Wang K, Tan W, Xie W, Wu P, Li H. Combination of functionalized nanoparticles and polymerase chain reaction-based method for SARS-CoV gene detection. J Nanosci Nanotechnol. 2008;8(1):293–300.

    Article  Google Scholar 

  • Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev. 2010;62(6):650–66.

    Article  Google Scholar 

  • Hall DC Jr, Ji HF. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis. 2020;35:101646.

    Article  Google Scholar 

  • Hirayama J, Ikebuchi K, Abe H, Kwon KW, Ohnishi Y, Horiuchi M, Shinagawa M, Ikuta K, Kamo N, Sekiguchi S. Photoinactivation of virus infectivity by hypocrellin A. Photochem Photobiol. 1997;66(5):697–700.

    Article  Google Scholar 

  • Hodgkinso V, Petris MJ. Copper homeostasis at the host-pathogen interface. J Biol Chem. 2012;287:13549–55.

    Article  Google Scholar 

  • Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotech. 2020;15:247–9.

    Article  ADS  Google Scholar 

  • Huo C, Xiao J, Xiao K,.Zou S, Wang M, Qi P, Liu T, Hu Y. Pre-treatment with zirconia nanoparticles reduces inflammation induced by the pathogenic H5N1 influenza virus. Int J Nanomed. 2020;15:661–674.

    Google Scholar 

  • Itani R, Tobaiqy M, Al FA. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10(13):5932–42.

    Article  Google Scholar 

  • Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS. Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Biosens Res. 2018;20:1–8.

    Google Scholar 

  • Joe YH, Park DH, Hwang J. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: anti-viral efficiency with dust loading. J Hazard Mater. 2016;301:547–53.

    Article  Google Scholar 

  • Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–51.

    Article  Google Scholar 

  • Kandeel M, Al-Taher A, Park BK, Kwon HJ, Al-Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol. 2020. https://doi.org/10.1002/jmv.25928.

    Article  Google Scholar 

  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805.

    Article  Google Scholar 

  • Kaur R, Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomed. 2013;8:203–20.

    Google Scholar 

  • Khandelwal N, Kaur G, Kumara N, et al. Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Dig J Nanomater Biostruct. 2014;9:175–86.

    Google Scholar 

  • Kim D, Choi Y, Shin E, Jung YK, Kim BS. Sweet nanodot for biomedical imaging: carbon dot derived from xylitol. RSC Adv. 2014;4:23210–3.

    Article  ADS  Google Scholar 

  • Kim H, Park M, Hwang J, Kim J, Chung DR, Lee KS, Kang M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens. 2019;4(5):1306–12.

    Article  Google Scholar 

  • Lee BY, Behler K, Kurtoglu ME, Wynosky-Dolfi MA, Rest RF Gogotsi Y. Titanium dioxide-coated nanofibers for advanced filters. J Nanopart Res 2010;12:2511−2519.

    Google Scholar 

  • Lee EC, Davis-Poynter N, Nguyen CTH, Peters AA, Monteith GR, Strounina E, Popat A, Ross BP. GAG mimetic functionalised solid and mesoporous silica nanoparticles as viral entry inhibitors of herpes simplex type 1 and type 2 viruses. Nanoscale. 2016;8:16192–6.

    Article  Google Scholar 

  • Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antiviral Chem Chemother. 2010;21(2):53–70.

    Article  Google Scholar 

  • Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agent Chemother. 2020;64(6):e00483-e520.

    Article  Google Scholar 

  • Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RYL, Unnikrishnan B, Mao JY, Chen SY. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small. 2019;15(41):1902641.

    Article  Google Scholar 

  • Loczechin A, Seron K, Barras A, Giovanelli E, Belouzard S, Chen YT, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interf. 2019;11:42964–74.

    Article  Google Scholar 

  • Lu H. Drug treatment options for the 2019-new coronavirus (2019- nCoV). BioSci Trends. 2020;14(1):69–71.

    Article  Google Scholar 

  • Lv X, Wang P, Bai R Cong Y, Suo S, Ren X, Chen C. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials. 2014;35(13):4195–4203.

    Google Scholar 

  • Mansoor F, Earley B, Cassidy JP, Markey B, Doherty S, Welsh MD. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet Res. 2015;11: Article number: 220.

    Google Scholar 

  • Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Nakamura S, Mochizuki M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett. 2005;15(4):1107–9.

    Article  Google Scholar 

  • McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;157:104859.

    Article  Google Scholar 

  • Milewska A, Kaminski K, Ciejka J, Kosowicz K, Zeglen S, Wojarski J, Nowakowska M, SzczubiaÅ‚ka K, Pyrc K. HTCC: broad range inhibitor of coronavirus entry. PLoS ONE. 2016;11(6):e0156552.

    Article  Google Scholar 

  • Milovanovic M, Arsenijevic A, Milovanovic J, Kanjeva, T, Arsenijevic N. Nanoparticles in antiviral therapy. Antimicrob Nanoarchitectonics. 2017;383–410.

    Google Scholar 

  • Miyamoto D, Kusagaya Y, Endo N, Sometani A, Takeo S, Suzuki T, Arima Y, Nakajima K, Suzuki Y. Thujaplicin-copper chelates inhibit replication of human influenza viruses. Antiviral Res. 1998;39:89–100.

    Article  Google Scholar 

  • Moitra P, Alafeef M, Dighe K, Matthew B. Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–7627.

    Google Scholar 

  • Muralidharan N, Sakthivel R, Velmurugan D, Michael Gromiha M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn. 2020;1–6.

    Google Scholar 

  • Molina R, Oliva B, Fernandez-Fuentes N. A collection of designed peptides to target SARS-CoV-2 – ACE2 interaction: PepI-Covid19 database. 2020;1:100006.

    Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials. 2020;10:1072.

    Article  Google Scholar 

  • Nguyen AVT, Dao TD, Trinh TTT, Choi DY, Yu ST, Park H, Yeuo SJ. Sensitive 302 detection of influenza a virus based on a CdSe/CdS/ZnS quantum dot-linked rapid 303 fluorescent immunochromatographic test. Biosens Bioelectron. 2020;155:112090.

    Article  Google Scholar 

  • Nikaeen G, Abbaszadeh S, Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine. 2020;15:1501–12.

    Article  Google Scholar 

  • Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H, Oda H, Mori M, Kobayashi A, Akatsuka T, Uchida T, Matsui M. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A transgenic mice. Vaccine. 2009;27(29):3912–20.

    Article  Google Scholar 

  • Osminkina LA, Timoshenko VY, Shilovsky IP, Kornilaeva GV, Shevchenko SN, Gongalsky MB, Tamarov KP, Abramchuk SS, Nikiforov VN, Khaitov MR, Karamov EV. Porous silicon nanoparticles as scavengers of hazardous viruses. J Nanopart Res. 2014;16:2430–40.

    Article  Google Scholar 

  • Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to athogens? Antioxid Redox Signal. 2014;20(6):1000–37.

    Article  Google Scholar 

  • Palmieri V, Papi M. Can graphene take part in the fight against COVID-19? Nano Today. 2020;33:100883.

    Article  Google Scholar 

  • Park S, Park HH, Kim SY, Kim SJ, Woo K, Ko G. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl Environ Microbiol. 2014;80(8):2343–50.

    Article  Google Scholar 

  • Pinto D, Park Y, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583:290–5.

    Article  ADS  Google Scholar 

  • Poh CM, Carissimo G, Wang B, Amrun SN, Lee CYP, Chee RSL et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun. 2020;11: Article Number: 2806.

    Google Scholar 

  • Prokunina-Olsson L, Alphonse N, Dickenson RE, Durbin JE, Glenn JS, Hartmann R, Kotenko SV, Lazear HM, O’Brien TR, Odendall C, Onabajo OO, Piontkivska H, Santer DM, Reich NC, Wack A, Zanoni I. COVID-19 and emerging viral infections: the case for interferon lambda. J Exp Med. 2020;217(5):e20200653.

    Article  Google Scholar 

  • Qin C, Li W, Li Q, Yin W, Zhang X, Zhang Z, Zhang X, Cui Z. Real-time dissection of dynamic uncoating of individual influenza viruses. Proc Nat Acad Sci USA. 2019;116:2577–82.

    Article  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42(1):46–56.

    Article  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98:1951–61.

    Article  Google Scholar 

  • Roh C, Jo SK. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J Chem Technol Biotechnol. 2011;86:1475–9.

    Article  Google Scholar 

  • Ruiz-Hitzky E, Darder M, Wicklein B, Ruiz-Garcia C, Martín-Sampedro R, Real G, Aranda P. Nanotechnology responses to COVID-19. Adv Healthc Mater. 2020;9:2000979.

    Article  Google Scholar 

  • Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–31.

    Article  Google Scholar 

  • Sarkar DS. Silver nanoparticles with bronchodilators through nebulisation to treat COVID 19 patients. J Curr Med Res Opin. 2014;3(4):449–50.

    Google Scholar 

  • Schuster DI, Wilson SR, Kirschner AN, Schinazi RF, Schluter-Wirtz S, Tharnish P, Barnett T, Ermolieff J, Tang J, Brettreich M, Hirsch A. Evaluation of the anti-HIV potency of a water-soluble dendrimeric fullerene. Proc Electrochem Soc. 2000;9:267–70.

    Google Scholar 

  • Serrano G, Kochergina L, Albors A, Diaz E, Oroval M, Hueso G, Serrano JM. Liposomal lactoferrin as potential preventative and cure for COVID-19. Int J Res Health Sci. 2020;8(1):8–15.

    Google Scholar 

  • Shetty R, Ghosh A, Honavar SG, Khamar P, Sethu S. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: present and future. Indian J Ophthalmol. 2020;68 (5):693–702.

    Google Scholar 

  • Sheybani Z, Dokoohaki MH, Negahdaripour M, et al. The role of folic acid in the management of respiratory disease caused by COVID-19. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.12034980.

    Article  Google Scholar 

  • Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Inf Dis. 2017;4(4):105–31.

    Google Scholar 

  • Singh Ashish K, Pradyot P, Ranjana S, Nabarun N, Zeba F, Monika B, Singh Ranjan K, Anchal S, Roy Jagat K., Brahmeshwar M, Singh Rakesh K. Curcumin quantum dots mediated degradation of bacterial biofilms. Front Microbiol 2017

    Google Scholar 

  • Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS. Mitropoulos AC, Mokarrar MH, Kyzas GZ. On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: possible strategies and first challenges. Nanomaterials. 2020;10 (5):852.

    Google Scholar 

  • Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko S, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: perspectives for COVID 19. Int J Mol Med. 2020;46:17–26.

    Google Scholar 

  • Song ZY, Wang XW, Zhu GW, Nian QG, Zhou HY, Yang D, Qin CF, Tang RK. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small. 2015;11:1171–6.

    Article  Google Scholar 

  • Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans Roy Soc A. 2010;368:1333–1383.

    Google Scholar 

  • Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials. 2020;10(4):802.

    Article  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Muthuraman P, Enkhtaivan G,. Vattikuti SVP, Tettey CO, Kim DH, Shim J Yoo K. Ultra-sonication-assisted silver nanoparticles using panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B Biol. 2018;188:6–11.

    Google Scholar 

  • Sucipto TH, Churrotin S, Setyawati H, Kotaki T, Martak F, Soegijanto S. Antiviral activity of copper(II) chloride dihydrate against dengue virus type-2 in Vero cell. Indonesian J Trop Infect Dis. 2017;6(4):84–9.

    Article  Google Scholar 

  • Ting D, Nan Dong N, Fang L, Lu J, Bi J, Xiao S, Han H. multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater. 2018;1(10):5451–9.

    Article  Google Scholar 

  • Ting D, Liang J, Dong N, Lu J, Fu Y, Fang L, Xiao S, Han H. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding. ACS Appl Mater Interf. 2018;10(5):4369–4378.

    Google Scholar 

  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5(3):485–505.

    Article  Google Scholar 

  • Tse LV, Rita MM, Rachel G L, Ralph BS. The current and future state of vaccines, antivirals and gene therapies against emerging coronaviruses. Front Microbiol. 2020;11: Article 658.

    Google Scholar 

  • Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay J, Chan WCW. diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822–35.

    Article  Google Scholar 

  • Uskokovic V. Nanotechnologies: what we do not know. Technol Soc. 2007;29(1):43–61.

    Article  Google Scholar 

  • Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–7.

    Article  Google Scholar 

  • Verdecchia P, Angeli F, Reboldi G. Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and coronavirus. J Hypertens. 2020;38(6):1190–1.

    Article  Google Scholar 

  • Wang C, Li W, Drabek D. Okba NMA, Haperen RV, Osterhouse ADME, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch BJ. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11: Article No: 2251.

    Google Scholar 

  • Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. mBio. 2015;6 (6):e01697–15.

    Google Scholar 

  • Wen WH, Lin M, Su CY, Wang SY, Cheng YSE, Fang JM, Wong CH. Synergistic effect of zanamivir-porphyrin conjugates on inhibition of neuraminidase and inactivation of influenza virus. J Med Chem. 2009;52:4903–10.

    Article  Google Scholar 

  • Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L, Hoffmann M, Pöhlmann S, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181(5):1004-1015.e15.

    Article  Google Scholar 

  • Yang XX, Li CM, Li YF, Wang J, Huang CZ. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale. 2017;9:16086–92.

    Article  Google Scholar 

  • Yamamoto N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun. 2004;318(3):719–25.

    Article  Google Scholar 

  • Yamauchi Y. Quantum dots crack the influenza uncoating puzzle. Proc Nat Acad Sci USA. 2019;116(7):2404–6.

    Article  Google Scholar 

  • Yanling S, Jia S, Xinyu W, Mengjiao H, Miao S, Lin Z, et al. (2020): Discovery of aptamers targeting receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal Chem. 2020;92(14):9895–990.

    Article  Google Scholar 

  • Yilmaz N, Esin E. Covid-19 and Iron Gate: The role of transferrin, transferrin receptor and hepcidin. 2020. https://www.researchgate.net/publication/340860987.

  • Yue H, Wei W, Fan B, Yue Z, Wang L, Ma G, Su Z. The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacol Res. 2012;65(2):189–97.

    Article  Google Scholar 

  • Zhang XG, Miao J, Li MW, Jiang SP, Hu FQ, Du YZ. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy. J Zhejiang Univ Sci B. 2008;9(6):506–10.

    Article  Google Scholar 

  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):E1534.

    Article  Google Scholar 

  • Zhang C, Chen Y, Liang X, Zhang G, Ma H, Nie L, Wang Y. Detection of hepatitis B virus M204I mutation by quantum dot-labelled DNA probe. Sensors. 2017;17:961.

    Article  Google Scholar 

  • Zhang LJ, Wang S, Xia L, Cheng L, Tang HW, Liang Z, Xiao G, Pang DW. Lipid-specific labeling of enveloped viruses with quantum dots for single-virus tracking. mBio. 2020;11 (3):e00135–20.

    Google Scholar 

  • Zumla A, Chan J, Azhar E. Hui DSC, Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47.

    Article  Google Scholar 

  • Zuniga JM, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices. 2020;17(6):477–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T. .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

T., D. (2021). The Nanotechnology-COVID-19 Interface. In: Nanotechnology-COVID-19 Interface. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-33-6300-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6300-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6299-4

  • Online ISBN: 978-981-33-6300-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics