Skip to main content

Structure of SARS CoV2

  • Chapter
  • First Online:
Nanotechnology-COVID-19 Interface

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

Abstract

SARS CoV2 is an enveloped RNA virus ranging in diameter approximately between 70 and 90 nm (Kim et al., Cell 181:914–921, 2020a; Osong Publ Health Res Persp 11:3–7, 2020b). Thus, SARS CoV2 may be referred as a viral nanostructure (Refer Chap. 6; chloroquine section). The protein envelope forms the outer structure which encloses the inner structure and the RNA genome-protein complex (Zhang et al. Vaccines 8(2):153, 2020a; Science. 368(6489):409–412, 2020b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.

    Article  Google Scholar 

  • Astuti I, Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diab Metab Syndr. 2020;14(4):407–412.

    Google Scholar 

  • Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38.

    Article  Google Scholar 

  • Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? BioMed Res Int. 2020:6. Article ID 4389089.

    Google Scholar 

  • Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J, Münch C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583:469–72.

    Article  ADS  Google Scholar 

  • Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801–11.

    Article  Google Scholar 

  • Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81:548–57.

    Article  Google Scholar 

  • Chan JF, Yuan S, Kok KH, Wang To KK, Chu H, Yang J, Xing F, Liu J, Yan Yip CC, Shan Poon RW, Tsoi HW, Fai Lo SK, Chan KH, Poon VK, Chan WM, Daniel J, Cai JP, Cheng VCC, Chen H, Hui CKM. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10233):514–23.

    Article  Google Scholar 

  • Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Joournal of Medical Virology. 2020;92(4):418–23.

    Article  Google Scholar 

  • Cowley TJ, Long SY, Weiss SR. The murine coronavirus nucleocapsid gene is a determinant of virulence. J Virol. 2010;84:1752–63.

    Article  Google Scholar 

  • Dai W, Zhang B, Su H, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;80:1335.

    Google Scholar 

  • Davies JP, Almasy KM, McDonald EF, Plate L. Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. Preprint. bioRxiv. 2020;2020.07.13.201517. Published 2020 Jul 14. doi:https://doi.org/10.1101/2020.07.13.201517

  • De Clercq E: Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006;4(2):291–302.

    Google Scholar 

  • Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, Gorbalenya AE, Snijder EJ, Canard B. Coronavirus non-structural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol. 2008;82(16):8071–84.

    Article  Google Scholar 

  • Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592.

    Article  Google Scholar 

  • Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020;368(6492):779–82.

    Article  ADS  Google Scholar 

  • Gordon DE, Jang GM, Bouhaddou MA, et al. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68.

    Article  ADS  Google Scholar 

  • Gupta R, Paswan RR, SAikia R, Borar BK. Insights into the severe acute respiratory syndrome coronavirus-2: transmission, genome composition, replication, diagnostics and therapeutics. Curr J Appl Sci Technol. 2020;39(21):71–91.

    Google Scholar 

  • Huang Y, Yang C, Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica B. 2020;41:1141–9.

    Article  ADS  Google Scholar 

  • Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019;47(12):6538–50.

    Article  Google Scholar 

  • Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human Coronaviruses. Trends Immunol. 2020;41(5):355–9.

    Article  Google Scholar 

  • Jimenez-Guardeno JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castano-Rodriguez C, Enjuanes L. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 2014;10(8):e1004320.

    Article  Google Scholar 

  • Khan RJ., Jha RK, Amera GM, Jain M, Singh E, Pathak A., Singh RP, Muthukumaran J, Singh A K. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribose methyltransferase. Journal of biomolecular structure & dynamics 2020; 1–14. Advance online publication. https://doi.org/10.1080/07391102.2020.1753577

  • Kim J, Lee Y, Yang JSS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181(4):914–21.

    Article  Google Scholar 

  • Kim JM, Chung YS, Jo HJ, Lee NJ, Kim MS, Woo SH, Park S, Kim JW, Kim HM, Han MG. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Publ Health Res Persp. 2020;11:3–7.

    Article  Google Scholar 

  • Lee C, Lee JM, Lee N, Kim DE, Chong Y. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg Med Chem Lett. 2009;19(1615):4538–4541.

    Google Scholar 

  • Mirza, MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease. Nsp12 RNA-dependent RNA polymerase and Nsp13 helicase. J Pharm Anal. 2020; In press.

    Google Scholar 

  • Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16(8):e1008762.

    Article  Google Scholar 

  • Narayanan K, Makino S. Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol. 2001;75(19):9059–67.

    Article  Google Scholar 

  • Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, Zella D, Ippodrino R. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Trans Med. 2020;18(1):179.

    Article  Google Scholar 

  • Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, Padya BS, Fernandes G, Mutalik S, Prassl R. Potential therapeutic targets for combating SARS-CoV-2: drug repurposing, clinical trials and recent advancements. Life Sci. 2020;256:117883.

    Article  Google Scholar 

  • Rut W, Żmudziński M, Snipas SJ, Bekes M, Huang TT, Drag M. Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chem Sci. 2020;11:6058–69.

    Article  Google Scholar 

  • Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus‐2. Archives of Medicaa Research. 2020.

    Google Scholar 

  • Savarino A, Buonavoglia C, Norelli S, Trani LD, Cassone A. Potential therapies for coronaviruses. Expert Opin Ther Pat. 2006;16(9):1269–88.

    Article  Google Scholar 

  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology J. 2019;16(1):P-NA.

    Google Scholar 

  • Shereen MA, Khan S, Kazmi A, Basheer N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.

    Article  Google Scholar 

  • Shu T., Huang M, Wu D, Ren Y, Zhang X, Han Y, Mu J, Wang R, Qiu Y, Zhang DY, Zhou X. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by Bismuth salts. Virologica Sinica. 2020;1–9. Advance online publication: https://doi.org/https://doi.org/10.1007/s12250-020-00242-1.

  • Silva SJR, Alves da Silva CT, Mendes RPG, Pena L. Role of nonstructural proteins in the pathogenesis of SARS‐CoV‐2. J Med Virol 2020;92:1427–1429.

    Google Scholar 

  • Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613–20.

    Article  Google Scholar 

  • Ul Qamar M.T, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020. doi:https://doi.org/10.1016/j.jpha.2020.03.009.

  • Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 2019;29:1545–54.

    Article  Google Scholar 

  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-292.e6.

    Article  Google Scholar 

  • Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, Zhang Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020;92(6):667–74.

    Article  Google Scholar 

  • Wang C, Sun M, Yuan X, et al. Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-α1 degradation. J Biol Chem. 2017;292(24):10262–74.

    Article  Google Scholar 

  • Williams GD, Gokhale NS, Horner SM. Regulation of viral infection by the RNA modification N6-methyladenosine. Ann Rev Virol. 2019;6:235–53.

    Article  Google Scholar 

  • Wu CJ, Chan YL. Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs. 2006;15(2):89–97.

    Article  Google Scholar 

  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.

    Article  ADS  Google Scholar 

  • Yahira M, Santos h B, Andrew DM. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38.

    Google Scholar 

  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.

    Article  ADS  Google Scholar 

  • Yang H, Bartlam M, Rao Z. Drug design targeting the main protease, the achilles heel of coronaviruses. Curr Pharm Des. 2006;12:4573–90.

    Article  Google Scholar 

  • Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines. 2020;8(2):153.

    Google Scholar 

  • Zhang L, Lin D, Sun X, Curth, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409–412.

    Google Scholar 

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T. .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

T., D. (2021). Structure of SARS CoV2. In: Nanotechnology-COVID-19 Interface. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-33-6300-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6300-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6299-4

  • Online ISBN: 978-981-33-6300-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics