Skip to main content

Prevention and Management of Complications

  • Chapter
  • First Online:
Essentials of Rhinology

Abstract

The good post-operative management is the important half of surgical success. The nasal packs are removed after 2–5 days of surgery. The duration of packing depends on the surgeon’s choice, type of packing material, intraoperative bleeding, disease clearance. The pack is also preventing the adhesion formation. Normal mucociliary function is compromised significantly in the early post-operative period so regular nasal douches is required to clean the post-surgical cavity. Regular removal of clots, curst is the prime goal of follow-up visits and it is for the prevention of formation of fibrous adhesion. Lund Kennedy, Philpott Javer and Kupferberg staging systems are proposed to assess the effectiveness of surgery. Antifungal treatment is indicated for invasive fungal sinusitis. The principles that the clinician should consider whenever faced with the treatment of an invasive mycoses are:

  1. 1.

    The correct identification of the causative organism.

  2. 2.

    The use of standard antifungal regimens.

  3. 3.

    Control of underlying medical or immune-compromised condition is essential.

  4. 4.

    Clinicians must pay attention to the pharmacokinetics and toxicity of the antifungal drugs, and alter the dose accordingly.

  5. 5.

    The cost-effectiveness of the newer, more expensive antifungal drugs.

Resistance to standard medication and duration of treatment are the recent major concern for antifungal therapy. The most effective way to prevent complications is knowledge of surgical anatomy. Complications are further categorized under nasal, orbital and intracranial type. Adhesion is the most common complication. Other nasal complications are mucosal ooze, bleeding, stenosis of ostium, mucocele, etc. The injury to periorbital and fat prolapse is the leading orbital complications. Abnormal surgical anatomy, extensive disease and poor instrumentation can injure the skull base which can lead to intracranial complications. Biofilms are defined as group of microbes in which cells adhere to each other or substratum irreversibly.

These biofilms have the potential to neutralize antibiotics and result in prolonged treatment. These biofilms are highly resistant to treatment with antimicrobials and are capable of shedding bacteria into the bloodstream which leads to recurrent bouts of infection. The treatment options are surgical removal of biofilms, topical antimicrobials and adjuvant therapies. Empty nose syndrome is newer entity and it occurs secondary to turbinate resection. In this chapter, we have highlighted the myriad presentation of this disease and the pathophysiology contributing to this illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silva MP, Baroody FM. Allergic fungal rhinosinusitis. Ann Allergy Asthma Immunol. 2013;110(4):217–22. https://doi.org/10.1016/j.jaip.2016.03.010.

    Article  PubMed  Google Scholar 

  2. Chakrabarti A, Denning DW, Ferguson BJ, et al. Fungal rhinosinusitis. Laryngoscope. 2009;119(9):1809–18. https://doi.org/10.1002/lary.20520.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12. https://doi.org/10.4193/Rhino50E2.

    Article  PubMed  Google Scholar 

  4. Kennedy JL, Hubbard MA, Huyett P, Patrie JT, Borish L, Payne SC. Sino-nasal outcome test (SNOT-22): a predictor of postsurgical improvement in patients with chronic sinusitis. Ann Allergy Asthma Immunol. 2013;111(4):246–251.e2. https://doi.org/10.1016/j.anai.2013.06.033.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kosugi EM, Chen VG, da Fonseca VMG, Pellogia Cursino MM, Mendes Neto JA, Gregório LC. Translation, cross-cultural adaptation and validation of SinoNasal Outcome Test (SNOT) - 22 to Brazilian Portuguese. Braz J Otorhinolaryngol. 2011;77(5):663–9. https://doi.org/10.1590/S1808-86942011000500021.

    Article  PubMed  Google Scholar 

  6. Lund VJ, Kennedy DW. Staging for rhinosinusitis. Otolaryngol Head Neck Surg. 1997;117(3 Pt 2):S35–40. https://doi.org/10.1016/S0194-59989770005-6.

    Article  CAS  PubMed  Google Scholar 

  7. Philpott CM, Clark A, Javer AR. Allergic fungal rhinosinusitis – a new staging system. Rhinology. 2011;4:1–7. https://doi.org/10.4193/Rhino10.121.

  8. Low T-HH, Woods CM, Ullah S, Carney AS. A double-blind randomized controlled trial of normal saline, lactated Ringer’s, and hypertonic saline nasal irrigation solution after endoscopic sinus surgery. Am J Rhinol Allergy. 2014;28(3):225–31. https://doi.org/10.2500/ajra.2014.28.4031.

    Article  PubMed  Google Scholar 

  9. Lilic N, Waldvogel-Thurlow S, Douglas RG. Physical characteristics of commercial and home-made nasal lavage solutions. J Laryngol Otol. 2014;128(S1):S40–3. https://doi.org/10.1017/S0022215113001291.

    Article  PubMed  Google Scholar 

  10. Lee VS, Humphreys IM, Purcell PL, Davis GE. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis: a randomized controlled trial. Int Forum Allergy Rhinol. 2017;7(4):365–72. https://doi.org/10.1002/alr.21898.

    Article  PubMed  Google Scholar 

  11. Welch KC, Thaler ER, Doghramji LL, Palmer JN, Chiu AG. The effects of serum and urinary cortisol levels of topical intranasal irrigations with budesonide added to saline in patients with recurrent polyposis after endoscopic sinus surgery. Am J Rhinol Allergy. 2010;24(1):26–8. https://doi.org/10.2500/ajra.2010.24.3418.

    Article  PubMed  Google Scholar 

  12. Neubauer PD, Schwam ZG, Manes RP. Comparison of intranasal fluticasone spray, budesonide atomizer, and budesonide respules in patients with chronic rhinosinusitis with polyposis after endoscopic sinus surgery. Int Forum Allergy Rhinol. 2016;6(3):233–7. https://doi.org/10.1002/alr.21688.

    Article  PubMed  Google Scholar 

  13. Bartle J, Millington A. How to perform nasal douching. Nurs Stand. 2017;31(49):41–5. https://doi.org/10.7748/ns.2017.e10683.

    Article  PubMed  Google Scholar 

  14. Bastier P-L, Lechot A, Bordenave L, Durand M, de Gabory L. Nasal irrigation: from empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(5):281–5. https://doi.org/10.1016/j.anorl.2015.08.001.

    Article  PubMed  Google Scholar 

  15. Biel MA, Pedigo L, Gibbs A, Loebel N. Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model. Int Forum Allergy Rhinol. 2013;3(6):468–73. https://doi.org/10.1002/alr.21134.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang Z, Hwang P, Sun Y, Zhou B. Steroid-eluting sinus stents for improving symptoms in chronic rhinosinusitis patients undergoing functional endoscopic sinus surgery. Cochrane Database Syst Rev. 2015;6:CD010436. https://doi.org/10.1002/14651858.CD010436.pub2.

    Article  Google Scholar 

  17. Gan EC, Thamboo A, Rudmik L, Hwang PH, Ferguson BJ, Javer AR. Medical management of allergic fungal rhinosinusitis following endoscopic sinus surgery: an evidence-based review and recommendations. Int Forum Allergy Rhinol. 2014;4(9):702–15. https://doi.org/10.1002/alr.21352.

    Article  PubMed  Google Scholar 

  18. Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96. https://doi.org/10.1016/j.bcp.2016.11.01.

    Article  CAS  PubMed  Google Scholar 

  19. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12:308–29.

    Article  CAS  PubMed  Google Scholar 

  20. Carr M, Dismukes WE. Antifungal drugs. In: Gorbach SL, Bartless JG, Blacklow NR, editors. Infectious diseases. Philadelphia: WB Saunders; 1992. p. 306.

    Google Scholar 

  21. Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology ofsystemic antifungal agents in clinical use, current investigational compounds and putative targets for antifungal drug development. Adv Pharmacol. 1998;44:343–501.

    Article  CAS  PubMed  Google Scholar 

  22. Barton CH, Pahl M, Vaziri ND, et al. Renal magnesium wasting associated with amphotericin B therapy. Am J Med. 1984;77:471–4.

    Article  CAS  PubMed  Google Scholar 

  23. Luna B, Drew RH, Perfect JR. Agents for treatment of invasive fungal infections. Otolaryngol Clin N Am. 2000;33:277–99.

    Article  CAS  Google Scholar 

  24. Kauffman CA, Carver PL. Use of azoles for systemic antifungal therapy. Adv Pharmacol. 1997;39:143–89.

    Article  CAS  PubMed  Google Scholar 

  25. Sheehan DI, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev. 1999;12:40–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benitez LL, Carver PL. Adverse effects associated with long-term administration of azole antifungal agents. Drugs. 2019;79(8):833–53. https://doi.org/10.1007/s40265-019-01127-8.

    Article  CAS  PubMed  Google Scholar 

  27. Van Burik JA, Hare RS, Solomon HF, Corrado ML, Kontoyiannis DP. Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis. 2006;42:e61–5.

    Article  PubMed  Google Scholar 

  28. Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43:25–31.

    Article  CAS  PubMed  Google Scholar 

  29. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: outcomes and prognostic factors associated with mortality. Clin Infect Dis. 2007;44:531–40.

    Article  PubMed  Google Scholar 

  30. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Article  CAS  PubMed  Google Scholar 

  31. Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–15.

    Article  CAS  PubMed  Google Scholar 

  32. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17(12):e383–92. https://doi.org/10.1016/S1473-3099(17)30316-X.

    Article  PubMed  Google Scholar 

  33. Zhang M, Yang X, Wang D, Yu C, Sun S. Antifungal activity of immunosuppressants used alone or in combination with fluconazole. J Appl Microbiol. 2019;126(5):1304–17. https://doi.org/10.1111/jam.14126.

    Article  CAS  PubMed  Google Scholar 

  34. Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 2018;51(3):333–9. https://doi.org/10.1016/j.ijantimicag.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  35. Robbins N, Wright GD, Cowen LE. Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectr. 2016;4(5) https://doi.org/10.1128/microbiolspec.FUNK-0002-2016.

  36. Saafan ME, Ragab SM, Albirmawy OA, Elsherif HS. Powered versus conventional endoscopic sinus surgery instruments in management of sinonasal polyposis. Eur Arch Otorhinolaryngol. 2013;270:149–55.

    Article  PubMed  Google Scholar 

  37. Manji J, Habib AR, Amanian AA, Alsaleh S, Thamboo A, Javer AR. Potential risk factors associated with the development of synechiae following functional endoscopic sinus surgery. Eur Arch Otorhinolaryngol. 2018;275(5):1175–81. https://doi.org/10.1007/s00405-018-4936-1.

    Article  PubMed  Google Scholar 

  38. Lee JM, Grewal A. Middle meatal spacers for the prevention of synechiae following endoscopic sinus surgery: a systematic review and meta-analysis of randomized controlled trials. Int Forum Allerg Rhinol. 2012;2:477–86.

    Article  Google Scholar 

  39. Vlastarakos PV, Iacovou E, Fetta M, Tapis M, Nikolopoulos TP. How effective is postoperative packing in FESS patients? A critical analysis of published interventional studies. Eur Arch Otorhinolaryngol. 2016;273(12):4061–71. https://doi.org/10.1007/s00405-015-3863-7.

    Article  PubMed  Google Scholar 

  40. Friedman M, Landsberg R, Tanyeri H. Middle turbinate medialization and preservation in endoscopic sinus surgery. Otolaryngol Head Neck Surg. 2000;123:76–80.

    Article  CAS  PubMed  Google Scholar 

  41. Boezaart AP, van der Merwe J, Coetzee A. Comparison of sodium nitroprusside - and esmolol-induced controlled hypotension for functional endoscopic sinus surgery. Can J Anaesth. 1995;42:373–6.

    Article  CAS  PubMed  Google Scholar 

  42. Mortuaire G, Bahij J, Maetz B, Chevalier D. Lund-Mackay score is predictive of bleeding in ethmoidectomy for nasal polyposis. Rhinology. 2008;46(4):285–8.

    CAS  PubMed  Google Scholar 

  43. Hwang SH, Seo JH, Joo YH, Kang JM. Does the preoperative administration of steroids reduce intraoperative bleeding during endoscopic surgery of nasal polyps? Otolaryngol Head Neck Surg. 2016;155(6):949–55. https://doi.org/10.1177/0194599816663455.

    Article  PubMed  Google Scholar 

  44. Günel C, Başak HS, Bleier BS. Oral steroids and intraoperative bleeding during endoscopic sinus surgery. B-ENT. 2015;11(2):123–8.

    PubMed  Google Scholar 

  45. de Vasconcellos SJA, do Nascimento-Júnior EM, de Aguiar Menezes MV, Tavares Mendes ML, de Souza Dantas R, Martins-Filho PRS. Preoperative tranexamic acid for treatment of bleeding, edema, and ecchymosis in patients undergoing rhinoplasty: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(9):816–23. https://doi.org/10.1001/jamaoto.2018.1381.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kang H, Hwang SH. Does topical application of tranexamic acid reduce intraoperative bleeding in sinus surgery during general anesthesia? Braz J Otorhinolaryngol. 2020;86(1):111–8. https://doi.org/10.1016/j.bjorl.2019.08.006.

    Article  PubMed  Google Scholar 

  47. Ko MT, Chuang KC, Su CY. Multiple analyses of factors related to intraoperative blood loss and the role of reverse Trendelenburg position in endoscopic sinus surgery. Laryngoscope. 2008;118:1687–91.

    Article  PubMed  Google Scholar 

  48. Abdullah B, Lim EH, Husain S, Snidvongs K, Wang Y. Anatomical variations of anterior ethmoidal artery and their significance in endoscopic sinus surgery: a systematic review. Surg Radiol Anat. 2019;41(5):491–9. https://doi.org/10.1007/s00276-018-2165-3.

    Article  PubMed  Google Scholar 

  49. Wynn R, Har-El G. Recurrence rates after endoscopic sinus surgery for massive sinus polyposis. Laryngoscope. 2004;114:811–3.

    Article  PubMed  Google Scholar 

  50. Zhang X, Ye T, Huang Z, et al. Clinical predictors of frontal ostium restenosis after draf 3 procedure for refractory chronic rhinosinusitis. Am J Rhinol Allergy. 2018;32(4):287–93. https://doi.org/10.1177/1945892418773625.

    Article  PubMed  Google Scholar 

  51. Amonoo-Kuofi K, Lund VJ, Andrews P, Howard DJ. The role of mitomycin C in surgery of the frontonasal recess: a prospective open pilot study. Am J Rhinol. 2006;20(6):591–4. https://doi.org/10.2500/ajr.2006.20.2917.

    Article  PubMed  Google Scholar 

  52. Luong A, Ow RA, Singh A, et al. Safety and effectiveness of a bioabsorbable steroid-releasing implant for the paranasal sinus ostia: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2018;144(1):28–35. https://doi.org/10.1001/jamaoto.2017.1859.

    Article  PubMed  Google Scholar 

  53. Benkhatar H, Khettab I, Sultanik P, Laccourreye O, Bonfils P. Mucocele development after endoscopic sinus surgery for nasal polyposis: a long-term analysis. Ear Nose Throat J. 2018;97(9):284–94.

    Article  PubMed  Google Scholar 

  54. Vaezeafshar R, Hwang PH, Turner JH. Commentary on “How to avoid mucocele formation under pedicled nasoseptal flap”. Am J Otolaryngol. 2014;35(4):547. https://doi.org/10.1016/j.amjoto.2014.03.009.

    Article  PubMed  Google Scholar 

  55. Lee DH, Jang WY, Yoon TM, Lee JK, Jung S, Lim SC. Sphenoid sinus mucocele caused by complications after transsphenoidal pituitary surgery. J Craniofac Surg. 2018;29(7):1859–61. https://doi.org/10.1097/SCS.0000000000004693.

    Article  PubMed  Google Scholar 

  56. Simmen D, Veerasigamani N, Briner HR, Jones N, Schuknecht B. Anterior maxillary wall and lacrimal duct relationship - CT analysis for prelacrimal access to the maxillary sinus. Rhinology. 2017;55(2):170–4. https://doi.org/10.4193/Rhin16.318.

    Article  CAS  PubMed  Google Scholar 

  57. Ali MJ, Nayak JV, Vaezeafshar R, Li G, Psaltis AJ. Anatomic relationship of nasolacrimal duct and major lateral wall landmarks: cadaveric study with surgical implications. Int Forum Allergy Rhinol. 2014;4(8):684–8. https://doi.org/10.1002/alr.21345.

    Article  PubMed  Google Scholar 

  58. Song XC, Sun Y, Zhang H, et al. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2011;46(10):818–24.

    PubMed  Google Scholar 

  59. Rodriguez MJ, Dave SP, Astor FC. Periorbital emphysema as a complication of functional endoscopic sinus surgery. Ear Nose Throat J. 2009;88(4):888–9. https://doi.org/10.1177/014556130908800414.

    Article  PubMed  Google Scholar 

  60. Shameer A, Pushker N, Lokdarshi G, Basheer S, Bajaj MS. Emergency decompression of orbital emphysema with elevated intraorbital pressure. J Emerg Med. 2017;53(3):405–7. https://doi.org/10.1016/j.jemermed.2016.10.021.

    Article  PubMed  Google Scholar 

  61. Ikeda K, Ito S, Homma H, et al. Orbital injury in endoscopic sinus surgery for sinonasal inflammatory disorders: Juntendo’s ten-year experience. Int J Otolaryngol Head Neck Surg. 2017;6:65–70.

    Article  Google Scholar 

  62. Stankiewicz JA. Blindness and intranasal endoscopic ethmoidectomy: prevention and management. Otolaryngol Head Neck Surg. 1989;101(3):320–9. https://doi.org/10.1177/019459988910100305.

    Article  CAS  PubMed  Google Scholar 

  63. Khanna A, Sama A. Managing complications and revisions in sinus surgery. Curr Otorhinolaryngol Rep. 2019;7:79–86. https://doi.org/10.1007/s40136-019-00231-3.

    Article  Google Scholar 

  64. Rene C, Rose GE, Lenthall R, Moseley I. Major orbital complications of endoscopic sinus surgery. Br J Ophthalmol. 2001;85(5):598–603. https://doi.org/10.1136/bjo.85.5.598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mohammadi F, Rashan A, Psaltis A, et al. Intraocular pressure changes in emergent surgical decompression of orbital compartment syndrome. JAMA Otolaryngol Head Neck Surg. 2015;141(6):562–5. https://doi.org/10.1001/jamaoto.2015.0524.

    Article  PubMed  Google Scholar 

  66. Cetinkaya EA, Koc K, Kucuk MF, Koc P, Muluk NB, Cingi C. Calculation of an optic nerve injury risk profile before sphenoid sinus surgery. J Craniofac Surg. 2017;28(1):e75–8. https://doi.org/10.1097/SCS.0000000000003239.

    Article  PubMed  Google Scholar 

  67. Kim JY, Kim HJ, Kim CH, Lee JG, Yoon JH. Optic nerve injury secondary to endoscopic sinus surgery: an analysis of three cases. Yonsei Med J. 2005;46(2):300–4. https://doi.org/10.3349/ymj.2005.46.2.300.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Seredyka-Burduk M, Burduk PK, Wierzchowska M, Kaluzny B, Malukiewicz G. Ophthalmic complications of endoscopic sinus surgery. Braz J Otorhinolaryngol. 2017;83(3):318–23. https://doi.org/10.1016/j.bjorl.2016.04.006.

    Article  PubMed  Google Scholar 

  69. Kassam AB, Prevedello DM, Carrau RL, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg. 2011;114(6):1544–68. https://doi.org/10.3171/2010.10.JNS09406.

    Article  PubMed  Google Scholar 

  70. Daele JJ, Goffart Y, Machiels S. Traumatic, iatrogenic, and spontaneous cerebrospinal fluid (CSF) leak: endoscopic repair. B-ENT. 2011;7(Suppl 17):47–60.

    PubMed  Google Scholar 

  71. Liu HS, Chen YT, Wang D, et al. The use of topical intranasal fluorescein in endoscopic endonasal repair of cerebrospinal fluid rhinorrhea. Surg Neurol. 2009;72(4):341–6. https://doi.org/10.1016/j.surneu.2009.03.034.

    Article  PubMed  Google Scholar 

  72. Hadad G, Bassagasteguy L, Carrau RL, et al. A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope. 2006;116(10):1882–6. https://doi.org/10.1097/01.mlg.0000234933.37779.e4.

    Article  PubMed  Google Scholar 

  73. D’Anza B, Tien D, Stokken JK, Recinos PF, Woodard TR, Sindwani R. Role of lumbar drains in contemporary endonasal skull base surgery: meta-analysis and systematic review. Am J Rhinol Allergy. 2016;30:430–5.

    Article  PubMed  Google Scholar 

  74. Conger A, Zhao F, Wang X, et al. Evolution of the graded repair of CSF leaks and skull base defects in endonasal endoscopic tumor surgery: trends in repair failure and meningitis rates in 509 patients. J Neurosurg. 2018;130(3):861–75. https://doi.org/10.3171/2017.11.JNS172141.

    Article  PubMed  Google Scholar 

  75. Borg A, Kirkman MA, Choi D. Endoscopic endonasal anterior skull base surgery: a systematic review of complications during the past 65 years. World Neurosurg. 2016;95:383–91. https://doi.org/10.1016/j.wneu.2015.12.105.

    Article  PubMed  Google Scholar 

  76. Shelesko EV, Kapitanov DN, Kravchuk AD, Okhlopkov VA, Zaytsev OS, Chernikova NA. Taktika lecheniia defektov osnovaniia cherepa, soprovozhdaiushchikhsia pnevmotsefalieĭ [Management of complex skull base defects accompanied by pneumocephalus]. Zh Vopr Neirokhir Im N N Burdenko. 2019;83(2):85–92. https://doi.org/10.17116/neiro20198302185.

    Article  CAS  PubMed  Google Scholar 

  77. Banu MA, Szentirmai O, Mascarenhas L, Salek AA, Anand VK, Schwartz TH. Pneumocephalus patterns following endonasal endoscopic skull base surgery as predictors of postoperative CSF leaks. J Neurosurg. 2014;121(4):961–75. https://doi.org/10.3171/2014.5.JNS132028.

    Article  PubMed  Google Scholar 

  78. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. https://doi.org/10.1038/nrmicro821.

    Article  CAS  PubMed  Google Scholar 

  79. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701. https://doi.org/10.1146/annurev.micro.57.030502.090720.

    Article  CAS  PubMed  Google Scholar 

  80. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40. https://doi.org/10.1016/j.tim.2004.11.010.

    Article  CAS  PubMed  Google Scholar 

  81. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22. https://doi.org/10.1126/science.284.5418.1318.

    Article  CAS  PubMed  Google Scholar 

  82. Nickel JC, Costerton JW. Bacterial localization in antibiotic-refractory chronic bacterial prostatitis. Prostate. 1993;23(2):107–14. https://doi.org/10.1002/pros.2990230204.

    Article  CAS  PubMed  Google Scholar 

  83. Hogan D, Kolter R. Why are bacteria refractory to antimicrobials? Curr Opin Microbiol. 2002;5(5):472–7. https://doi.org/10.1016/s1369-5274(02)00357-0.

    Article  CAS  PubMed  Google Scholar 

  84. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91–6. https://doi.org/10.1097/00001432-200404000-00004.

    Article  PubMed  Google Scholar 

  85. Sims JN, Isokpehi RD, Cooper GA, et al. Visual analytics of surveillance data on foodborne vibriosis, United States, 1973-2010. Environ Health Insights. 2011;5:71–85. https://doi.org/10.4137/EHI.S7806.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Azeredo J, Azevedo NF, Briandet R, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43(3):313–51. https://doi.org/10.1080/1040841X.2016.1208146.

    Article  CAS  PubMed  Google Scholar 

  87. Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MCM, Stewart PS. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix--a modelling study. Microbiology. 2005;151(Pt 12):3817–32. https://doi.org/10.1099/mic.0.28165-0.

    Article  CAS  PubMed  Google Scholar 

  88. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22. https://doi.org/10.1038/nrd1008.

    Article  CAS  PubMed  Google Scholar 

  89. Richards JJ, Melander C. Controlling bacterial biofilms. Chembiochem. 2009;10(14):2287–94. https://doi.org/10.1002/cbic.200900317.

    Article  CAS  PubMed  Google Scholar 

  90. Vlastarakos PV, Nikolopoulos TP, Maragoudakis P, Tzagaroulakis A, Ferekidis E. Biofilms in ear, nose, and throat infections: how important are they? Laryngoscope. 2007;117(4):668–73. https://doi.org/10.1097/MLG.0b013e318030e422.

    Article  PubMed  Google Scholar 

  91. Parsek MR, Greenberg EP. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol. 1999;310:43–55. https://doi.org/10.1016/s0076-6879(99)10005-3.

    Article  CAS  PubMed  Google Scholar 

  92. Prince AA, Steiger JD, Khalid AN, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol. 2008;22(3):239–45. https://doi.org/10.2500/ajr.2008.22.3180.

    Article  PubMed  Google Scholar 

  93. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340–55. https://doi.org/10.3109/10408410903241436.

    Article  CAS  PubMed  Google Scholar 

  94. Le T, Psaltis A, Tan LW, Wormald PJ. The efficacy of topical antibiofilm agents in a sheep model of rhinosinusitis. Am J Rhinol. 2008;22(6):560–7. https://doi.org/10.2500/ajr.2008.22.3232.

    Article  PubMed  Google Scholar 

  95. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45. https://doi.org/10.1146/annurev.mi.49.100195.003431.

    Article  CAS  PubMed  Google Scholar 

  96. Alandejani T, Marsan J, Ferris W, Slinger R, Chan F. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg. 2009;141(1):114–8. https://doi.org/10.1016/j.otohns.2009.01.005.

    Article  PubMed  Google Scholar 

  97. Chiu AG, Palmer JN, Woodworth BA, et al. Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am J Rhinol. 2008;22(1):34–7. https://doi.org/10.2500/ajr.2008.22.3122.

    Article  PubMed  Google Scholar 

  98. Desrosiers M, Myntti M, James G. Methods for removing bacterial biofilms: in vitro study using clinical chronic rhinosinusitis specimens. Am J Rhinol. 2007;21(5):527–32. https://doi.org/10.2500/ajr.2007.21.3069.

    Article  PubMed  Google Scholar 

  99. Zhang Z, Han D, Zhang S, et al. Biofilms and mucosal healing in postsurgical patients with chronic rhinosinusitis. Am J Rhinol Allergy. 2009;23(5):506–11. https://doi.org/10.2500/ajra.2009.23.3376.

    Article  PubMed  Google Scholar 

  100. Tré-Hardy M, Vanderbist F, Traore H, Devleeschouwer MJ. In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int J Antimicrob Agents. 2008;31(4):329–36. https://doi.org/10.1016/j.ijantimicag.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  101. Tatar EC, Unal FO, Tatar I, Celik HH, Gursel B. Investigation of surface changes in different types of ventilation tubes using scanning electron microscopy and correlation of findings with clinical follow-up. Int J Pediatr Otorhinolaryngol. 2006;70(3):411–7. https://doi.org/10.1016/j.ijporl.2005.07.005.

    Article  PubMed  Google Scholar 

  102. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280(5361):295–8. https://doi.org/10.1126/science.280.5361.295.

    Article  CAS  PubMed  Google Scholar 

  103. Sozansky J, Houser SM. Pathophysiology of empty nose syndrome. Laryngoscope. 2015;125(1):70–4. https://doi.org/10.1002/lary.24813.

    Article  PubMed  Google Scholar 

  104. Wu X, Myers AC, Goldstone AC, Togias A, Sanico AM. Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol. 2006;118(2):428–33. https://doi.org/10.1016/j.jaci.2006.04.037.

    Article  CAS  PubMed  Google Scholar 

  105. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–81. https://doi.org/10.1146/annurev.neuro.24.1.1217.

    Article  CAS  PubMed  Google Scholar 

  106. Chhabra N, Houser SM. The diagnosis and management of empty nose syndrome. Otolaryngol Clin N Am. 2009;42(2):311–ix. https://doi.org/10.1016/j.otc.2009.02.001.

    Article  Google Scholar 

  107. Velasquez N, Thamboo A, Habib AR, Huang Z, Nayak JV. The Empty Nose Syndrome 6-Item Questionnaire (ENS6Q): a validated 6-item questionnaire as a diagnostic aid for empty nose syndrome patients. Int Forum Allergy Rhinol. 2017;7(1):64–71. https://doi.org/10.1002/alr.21842.

    Article  PubMed  Google Scholar 

  108. Thamboo A, Velasquez N, Habib AR, Zarabanda D, Paknezhad H, Nayak JV. Defining surgical criteria for empty nose syndrome: validation of the office-based cotton test and clinical interpretability of the validated empty nose syndrome 6-item questionnaire. Laryngoscope. 2017;127(8):1746–52. https://doi.org/10.1002/lary.26549.

    Article  PubMed  Google Scholar 

  109. Houser SM. Surgical treatment for empty nose syndrome. Arch Otolaryngol Head Neck Surg. 2007;133(9):858–63. https://doi.org/10.1001/archotol.133.9.858.

    Article  PubMed  Google Scholar 

  110. Jang YJ, Kim JH, Song HY. Empty nose syndrome: radiologic findings and treatment outcomes of endonasal microplasty using cartilage implants. Laryngoscope. 2011;121(6):1308–12. https://doi.org/10.1002/lary.21734.

    Article  PubMed  Google Scholar 

  111. Xu X, Li L, Wang C, et al. The expansion of autologous adipose-derived stem cells in vitro for the functional reconstruction of nasal mucosal tissue. Cell Biosci. 2015;5:54. https://doi.org/10.1186/s13578-015-0045-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Friji MT, Gopalakrishnan S, Verma SK, Parida PK, Mohapatra DP. New regenerative approach to atrophic rhinitis using autologous lipoaspirate transfer and platelet-rich plasma in five patients: our experience. Clin Otolaryngol. 2014;39(5):289–92. https://doi.org/10.1111/coa.12269.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanodia, A. et al. (2021). Prevention and Management of Complications. In: Verma, H., Thakar, A. (eds) Essentials of Rhinology. Springer, Singapore. https://doi.org/10.1007/978-981-33-6284-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6284-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6283-3

  • Online ISBN: 978-981-33-6284-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics