Skip to main content

Fractional SEIR Model for Modelling the Spread of COVID-19 in Namibia

  • Conference paper
  • First Online:
Mathematical Analysis for Transmission of COVID-19

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

In this chapter, a fractional SEIR model and its robust first-order unconditionally convergent numerical method is proposed. Initial conditions based on Namibian data as of 4 July 2020 were used to simulate two scenarios. In the first scenario, it is assumed that the proper control mechanisms for kerbing the spread of COVID-19 are in place. In the second scenario, a worst-case scenario is presented. The worst case is characterised by ineffective COVID-19 control mechanisms. Results indicate that if proper control mechanisms are followed, Namibia can contain the spread of COVID-19 in the country to a lowest level of 1, 800 positive cases by October 2020. However, if no proper control mechanisms are followed, Namibia can hit a potentially unmanageable level of over 14, 000 positive cases by October 2020. From a mathematical point of view, results indicate that the fractional SEIR model and the proposed method are appropriate for modelling the chaotic nature observed in the spread of COVID-19. Results herein are fundamentally important to policy and decision-makers in devising appropriate control and management strategies for curbing further spread of COVID-19 in Namibia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Djilali, S., & Ghanbari, B. (2020). Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa. Turkey, and Brazil, Chaos, Solitons & Fractals, 138, 109971.

    Article  MathSciNet  Google Scholar 

  2. Mishra, A. M., Purohit, S. D., Owolabi, K. M., & Sharma, Y. D. (2020). A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 Virus. Chaos, Solitons & Fractals, 138, 109953.

    Article  MathSciNet  Google Scholar 

  3. Hu, Y., Sun, J., Dai, Z., Deng, H., Li, X., Huang, Q., et al. (2020). Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of Clinical Virology, 127, 104371.

    Article  Google Scholar 

  4. Postnikov, E. B. (2020). Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions? Chaos. Solitons & Fractals, 135, 109841.

    Article  MathSciNet  Google Scholar 

  5. Manotosh, M., Soovoojeet, J., Swapan, K. N., Anupam, K., Sayani, A., & Kar, T. K. (2020). A model based study on the dynamics of COVID-19: Prediction and control. Chaos, Solitons & Fractals, 136, 109889.

    Article  MathSciNet  Google Scholar 

  6. Kassa, S. M., Njagarah, J. B. H., & Terefe, Y. A. (2020). Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective. Chaos, Solitons & Fractals, 138, 109968.

    Article  MathSciNet  Google Scholar 

  7. Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China. Italy and France, Chaos, Solitons & Fractals, 134, 109761.

    Article  MathSciNet  Google Scholar 

  8. Ullah, S., & Khan, M. A. (2020). Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study, Chaos. Solitons & Fractals, 139, 110075. https://doi.org/10.1016/j.chaos.2020.110075.

    Article  MathSciNet  Google Scholar 

  9. Barmparis, G. D., & Tsironis, G. P. (2020). Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach. Chaos, Solitons & Fractals, 135, 109842.

    Article  Google Scholar 

  10. Willis, M. J., Díaz, V. H. G., Prado-Rubio, O. A., & von Stosch, M. (2020). Insights into the dynamics and control of COVID-19 infection rates, Chaos. Solitons & Fractals, 138, 109937.

    Article  MathSciNet  Google Scholar 

  11. Amina, R., Shah, K., Asifa, M., Khana, I., & Ullaha, F. (2020). An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet. Journal of Computational and Applied Mathematics, 381, 113028.

    Article  MathSciNet  Google Scholar 

  12. Alzaid, S. S., & Alkahtani, B. S. T. (2019). Modified numerical methods for fractional differential equations. Alexandria Engineering Journal, 58, 1439–1447.

    Article  Google Scholar 

  13. Al-Zhour, Z., Al-Mutairi, N., Alrawajeh, F., & Alkhasawneh, R. (2019). Series solutions for the Laguerre and Lane-Emden fractional differential equations in the sense of conformable fractional derivative. Alexandria Engineering Journal, 58, 1413–1420.

    Article  Google Scholar 

  14. Das, S. (2008). Functional Fractional Calculus for System Identification and Controls. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  15. Alkahtani, B. S. T., & Alzaid, S. S. (2020). A novel mathematics model of covid-19 with fractional derivative. Stability and Numerical Analysis, Chaos, Solitons & Fractals, 138, 110006.

    Article  Google Scholar 

  16. Atangana, A. (2020). Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination. Chaos, Solitons & Fractals, 136, 3109860.

    Article  MathSciNet  Google Scholar 

  17. Nuugulu, S.M., Gideon, F. & Patidar, K. C. (2020). A robust \(\theta \)-method for a time-space-fractional black-scholes equation, Springer Proceedings, Article in Press.

    Google Scholar 

  18. Nuugulu, S. M., Gideon, F., & Patidar, K. C. (2020). An efficient finite difference approximation for a time-fractional black-scholes PDE arising via fractal market hpothesis. Under Review: Alexandria Engineering Journal.

    Google Scholar 

  19. Owolabi, K. M. (2019). Mathematical modelling and analysis of love dynamics: A fractional approach. Physica A, 525, 849–865.

    Article  MathSciNet  Google Scholar 

  20. Prakash, A., & Kaur, H. (2019). Analysis and numerical simulation of fractional order Cahn-Allen model with Atangana-Baleanu derivative. Chaos, Solitons & Fractals, 124, 134–142.

    Article  MathSciNet  Google Scholar 

  21. Nuugulu, S. M., Gideon, F., & Patidar, K. C. (2020). An efficient numerical method for pricing double barrier options on an underlying asset following a fractal stochastic process. Under Review: Applied and Computational Mathematics.

    Google Scholar 

  22. Nuugulu, S. M., Gideon, F., & Patidar, K. C. (2020). A robust numerical scheme for a time fractional Black-Scholes partial differential equation describing stock exchange dynamics, Chaos. Solitons & Fractals: Article In Press.

    Google Scholar 

  23. Julius, E. T., Nuugulu, S. M., & Julius L. H. (2020). Estimating the economic impact of Covid-19: a case study of Namibia, MPRA (preprint) https://mpra.ub.uni-muenchen.de/99641/.

  24. Khan, M. A., & Atangana, A. (2020). Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alexandria Engineering Journal, 59, 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033.

    Article  Google Scholar 

  25. Zhang, Y., Yu, X., Sun, H., Tick, G. R., Wei, W., & Jin, B. (2020). Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19. Chaos, Solitons & Fractals, 138, 109959.

    Article  MathSciNet  Google Scholar 

  26. Khan, M. A., Atangana, A., Alzahrani, E., & Fatmawati, E. (2020). The dynamics of COVID-19 with quarantined and isolation. Advances in Difference Equations, 1, 425. https://doi.org/10.1186/s13662-020-02882-9.

    Article  MathSciNet  Google Scholar 

  27. Diethelm, K., & Ford, N. J. (2002). Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 265, 229–248.

    Article  MathSciNet  Google Scholar 

  28. Li, M. Y., & Wang, L. (2020). Global stability in some seir epidemic models. The IMA Volumes in Mathematics and its Applications126. (2002) (Springer, New York)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers whose comments and suggestions helped improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel M. Nuugulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nuugulu, S.M., Shikongo, A., Elago, D., Salom, A.T., Owolabi, K.M. (2021). Fractional SEIR Model for Modelling the Spread of COVID-19 in Namibia. In: Shah, N.H., Mittal, M. (eds) Mathematical Analysis for Transmission of COVID-19. Mathematical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6264-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6264-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6263-5

  • Online ISBN: 978-981-33-6264-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics