Skip to main content

Gut Bacterial Dysbiosis and Its Clinical Implications

  • Chapter
  • First Online:
Probiotic Research in Therapeutics

Abstract

The gut microbiota as it is collectively known, functions as an organ of the human body influencing various metabolic, immunologic and neurologic activities. Our understanding of this microbial community has drastically increased in the past decade owing to a burst in ‘omics’ sciences. A healthy microbiome is essential for energy harvest and normal functioning of other body processes beyond the gut. However, perturbances in the gut microbiota referred to as ‘dysbiosis’ are said to hamper the homeostatic condition and are implicated in the development of a number of diseases such as obesity, metabolic syndrome, diabetes, inflammation, etc. A number of factors such as antibiotic misuse, dietary lifestyle, etc. are said to lead to bacterial dysbiosis. Since the gut microbial community is largely composed of bacteria, understanding the composition, factors influencing dysbiosis and its implications in several diseases is important. Thus, this chapter focuses on highlighting the importance of the gut microbiota, factors responsible for dysbiosis, effects of dysbiosis leading to several conditions as well as scope for normalizing the dysbiotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 8:e66986

    Google Scholar 

  • Abdellatif AM, Sarvetnick NE (2019) Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes 11:632–644

    Article  PubMed  Google Scholar 

  • Abraham D, Feher J, Scuderi GL et al (2019) Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: role of microbiome. Exp Gerontol 115:122–131

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Dwivedi G, O'Gara F et al (2019) The gut microbiome and atherosclerosis: current knowledge and clinical potential. Am J Physiol-Heart Circ Physiol 317:923–938

    Article  CAS  Google Scholar 

  • Ahmadi S, Wang S, Nagpal R et al (2020) A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating microbiota-taurine-tight junction axis. JCI Insight 5:e132055

    Article  PubMed Central  Google Scholar 

  • Albenberg L, Wu G (2014) Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterol 146:1564–1572

    Article  CAS  Google Scholar 

  • AlFaleh K, Anabrees J (2014) Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid-Based Child Health: Cochrane Rev J 9:584–671

    Article  Google Scholar 

  • Altamura F, Maurice CF, Castagner B (2020) Drugging the gut microbiota: toward rational modulation of bacterial composition in the gut. Curr Opin Chem Biol 56:10–15

    Article  CAS  PubMed  Google Scholar 

  • Archer AC, Halami PM (2017) Fermented foods, microbiota and human health. In: Mining of microbial wealth and meta genomics. Springer, Singapore, pp 301–331

    Chapter  Google Scholar 

  • Archer AC, Kurrey NK, Halami PM (2018) In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp. J Appl Microbiol 125:243–256

    Article  CAS  PubMed  Google Scholar 

  • Aroniadis O, Brandt L (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29:79–84

    Article  PubMed  Google Scholar 

  • Arrieta MC et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307

    Article  CAS  Google Scholar 

  • Arslan N (2014) Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol 20:16452–16463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assa A, Vong L, Pinnell L et al (2015) Vitamin D deficiency predisposes to adherent-invasive Escherichia coli-induced barrier dysfunction and experimental colonic injury. Inflamm Bowel Dis 21:297–306

    Article  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Oshima K et al (2013) T reg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236

    Article  CAS  PubMed  Google Scholar 

  • Azcarate-Peril MA, Ritter AJ, Savaiano D et al (2017) Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci 114:E367–E375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backhed F, Manchester J, Semenkovich C et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballini A, Santacroce L, Cantore S et al (2019) Probiotics efficacy on oxidative stress values in inflammatory bowel disease: a randomized double-blinded placebo-controlled pilot study. Endocr Metab Immune Dis-Dug Targets 19:373–381

    Article  CAS  Google Scholar 

  • Bauer CM, Zhang X, Long MD, Sandler RS (2020) Characteristics of fecal microbiota transplantation use in inflammatory bowel disease cohort. Crohn’s Colitis 360 2:024

    Google Scholar 

  • Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berer K, Mues M, Koutrolus M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541

    Article  CAS  PubMed  Google Scholar 

  • Bien J, Palagani V, Bozko P et al (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol 6:53–68

    Article  Google Scholar 

  • Bischoff SC, Barbara G, Buurman W et al (2014) Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 14:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bodkhe R, Shetty SA, Dhotre DP et al (2019) Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front Microbiol 10:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfili L, Cecarini V, Gogoi O et al (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43

    Article  CAS  PubMed  Google Scholar 

  • Brusaferro A, Cavalli E, Farinelli E et al (2019) Gut dysbiosis and paediatric Crohn’s disease. J Infect 78:1–7

    Article  PubMed  Google Scholar 

  • Cahenzli J, Koller Y, Wyss M et al (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callejo M, Mondejar-Parreño G, Barreira B et al (2018) Pulmonary arterial hypertension affects the rat gut microbiome. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  • Cancello R, Turroni S, Rampelli S et al (2019) Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women. Nutrients 11:3011

    Article  CAS  PubMed Central  Google Scholar 

  • Cani P, Amar J, Iglesias M et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Castellarin M, Warren R, Freeman J et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassard C, Dapoigny M, Scott KP et al (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35:828–838

    Article  CAS  PubMed  Google Scholar 

  • Chau K, Lau E, Greenberg S et al (2015) Probiotics for infantile colic: a randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J Pediatr 166:74–78

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Yu YN, Wang JL et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibbar R, Dieleman LA (2019) The gut microbiota in celiac disease and probiotics. Nutrients 11:2375

    Article  CAS  PubMed Central  Google Scholar 

  • Chileshe J, Talsma EF, Schoustra SE et al (2020) Potential contribution of cereal and milk based fermented foods to dietary nutrient intake of 1-5 years old children in central province in Zambia. PLoS One 15:e0232824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Hur TY, Hong Y et al (2018) Influence of altered gut microbiota composition on aging and aging-related diseases. J Lifestyle Med 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  PubMed  Google Scholar 

  • Clayton E, Rea M, Shanahan F et al (2009) The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am J Gastroenterol 104:1162–1169

    Article  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Paola MD et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • De Palma G, Nadal I, Medina M et al (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 10:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Palma G, Pigrau M, Cocciolillo S et al (2016) Abstract# 1850 early life stress predisposes to increased sensitivity to inflammatory stimuli through intestinal dysbiosis. Brain Behav Immun 57:e39

    Article  Google Scholar 

  • DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22:1137–1150

    Article  PubMed  Google Scholar 

  • Dhama K, Latheef SK, Munjal AK et al (2016) Probiotics in curing allergic and inflammatory conditions-research progress and futuristic vision. Recent Patents Inflamm Allergy Drug Discov 10:105–118

    Article  CAS  Google Scholar 

  • Dodiya HB, Forsyth CB, Voigt RM et al (2019) 876–stress-induced disruption of intestinal barrier and dysbiosis accelerated neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease: evidence for gut-brain axis dysfunction in PD. Gastroenterol 156:197

    Article  Google Scholar 

  • Duboc H, Rajca S, Rainteau D et al (2013) Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62:531–539

    Article  CAS  PubMed  Google Scholar 

  • Duparc T, Plovier H, Marrachelli VG et al (2017) Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 66:620–632

    Article  CAS  PubMed  Google Scholar 

  • Elinav E, Nowarski R, Thaiss C et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771

    Article  CAS  PubMed  Google Scholar 

  • Eswaran S, Dolan RD, Ball SC et al (2020) The impact of a 4-week low-FODMAP and mNICE diet on nutrient intake in a sample of US adults with irritable bowel syndrome with diarrhea. J Acad Nutr Diet 120:641–649

    Article  PubMed  Google Scholar 

  • Fardini Y, Wang X, Témoin S et al (2011) Fusobacterium nucleatum adhesin fad a binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 82:1468–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández J, de la Fuente VG, García MF et al (2020) A diet based on cured acorn-fed ham with oleic acid content promotes anti-inflammatory gut microbiota and prevents ulcerative colitis in an animal model. Lipids Health Dis 19:1–19

    Article  CAS  Google Scholar 

  • Flint H, Scott K, Duncan S et al (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox C, Eichelberger K (2015) Maternal microbiome and pregnancy outcomes. Fertil Steril 104:1358–1363

    Article  PubMed  Google Scholar 

  • Gibson GR, Hutkins R, Sanders ME et al (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491

    Article  PubMed  Google Scholar 

  • Giongo A, Gano K, Crabb D et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91

    Article  CAS  PubMed  Google Scholar 

  • Girbovan A, Sur G, Samasca G, Lupan I et al (2017) Dysbiosis a risk factor for celiac disease. Med Microbiol Immunol 206:83–91

    Article  PubMed  Google Scholar 

  • Gobert AP, Sagrestani G, Delmas E et al (2016) The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci Rep 6:1–2

    Article  CAS  Google Scholar 

  • Halfvarson J, Brislawn CJ, Lamendella R et al (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2:1–7

    Article  CAS  Google Scholar 

  • Haro C, Garcia-Carpintero S, Alcala-Diaz JF et al (2016) The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem 27:27–31

    Article  CAS  PubMed  Google Scholar 

  • Hedin C, McCarthy N, Louis P et al (2014) Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut 63:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord 32:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E (2020) Dysbiosis of the gut and lung microbiome has a role in asthma. In: Seminars in immunopathology. Springer, Berlin Heidelberg, pp 1–19

    Google Scholar 

  • Ianiro G, Bibbo S, Scaldaferri F et al (2014) Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Med (Baltimore) 93:e97

    Article  Google Scholar 

  • Ipci K, Altıntoprak N, Muluk NB et al (2016) The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol 274(2):617–626

    Article  PubMed  Google Scholar 

  • Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870

    Article  CAS  PubMed  Google Scholar 

  • Jangi S, Gandhi R, Cox LM et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Comm 7:1–11

    Article  CAS  Google Scholar 

  • Jeffery IB, O’Toole PW, Ohman L et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006

    Article  PubMed  Google Scholar 

  • Jin D, Wu S, Zhang Y et al (2015) Lack of vitamin d receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther 37:996–1009

    Article  CAS  PubMed  Google Scholar 

  • Joossens M, Huys G, Cnockaert M et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637

    Article  PubMed  Google Scholar 

  • Kaliannan K, Li XY, Wang B et al (2019) Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Comms Biol 2:1–18

    CAS  Google Scholar 

  • Kalliomäki M, Satokari R, Lähteenoja H et al (2012) Expression of microbiota, toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 54:727–732

    Article  PubMed  CAS  Google Scholar 

  • Kamo T, Akazawa H, Suda W et al (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PloS one 12:e0174099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlsson FH, Fak F, Nookaew I et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Comms 3:1245

    Article  CAS  Google Scholar 

  • Kaur KK, Allahbadia G, Singh M (2020) Will Probiotics Provide the Answer for Therapy of Non-alcoholic Fatty Liver Disease (NAFLD). Sys Rev Biochem Physiol 9(2)

    Google Scholar 

  • Kishikawa T, Maeda Y, Nii T et al (2020) Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis 79:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kitai T, Tang WW (2018) Gut microbiota in cardiovascular disease and heart failure. Clin Sci 132:85–91

    Article  Google Scholar 

  • Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108:4578–4585

    Article  CAS  PubMed  Google Scholar 

  • Koren O, Goodrich JK, Cullender TC et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpela K, Salonen A, Virta LJ et al (2016) Lactobacillus rhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PloS One 11:e0154012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutnikova H, Genser B, Monteiro-Sepulveda M et al (2019) Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 9:e017995

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang YS, Lu JH, Li SH et al (2017) Connections between the human gut microbiome and gestational diabetes mellitus. Gigasci 6:058

    Article  CAS  Google Scholar 

  • Kumar M, Babaei P, Ji B, Nielsen J et al (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging 4:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunzmann AT, Coleman HG, Huang WY et al (2016) Fruit and vegetable intakes and risk of colorectal cancer and incident and recurrent adenomas in the PLCO cancer screening trial. Int J Cancer 138:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Larsen N, Vogensen F, Van Den Berg F et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D, Albenberg L, Compher C et al (2015) Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterol 148:1087–1106

    Article  CAS  Google Scholar 

  • Leung K, Thuret S (2015) Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare (Basel) 3:898–916

    Article  Google Scholar 

  • Leventogiannis K, Gkolfakis P, Spithakis G et al (2019) Effect of a preparation of four probiotics on symptoms of patients with irritable bowel syndrome: association with intestinal bacterial overgrowth. Probiotics Antimicrob Proteins 11:627–634

    Article  CAS  PubMed  Google Scholar 

  • Ley R, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Butcher J, Mack D et al (2015) Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 21:139–153

    Article  CAS  PubMed  Google Scholar 

  • Li X, Watanabe K, Kimura I (2017) Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front Immunol 8:1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Liang L, Deng H et al (2020) Efficacy and safety of probiotics in irritable bowel syndrome: a systematic review and meta-analysis. Front Pharmacol 11:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombardi F, Fiasca F, Minelli M et al (2020) The effects of low-nickel diet combined with oral administration of selected probiotics on patients with systemic nickel allergy syndrome (SNAS) and gut dysbiosis. Nutrients 12:1040

    Article  CAS  PubMed Central  Google Scholar 

  • Madempudi RS, Ahire JJ, Neelamraju J et al (2019) Efficacy of UB 0316, a multi-strain probiotic formulation in patients with type 2 diabetes mellitus: a double blind, randomized, placebo controlled study. PloS One 14:e0225168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Kurakawa T, Umemoto E et al (2016) Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 68:2646–2661

    Article  CAS  PubMed  Google Scholar 

  • Marchi J, Berg M, Dencker A et al (2015) Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 16:621–638

    Article  CAS  PubMed  Google Scholar 

  • Marißen J, Haiß A, Meyer C et al (2019) Efficacy of Bifidobacterium longum, B. infantis and Lactobacillus acidophilus probiotics to prevent gut dysbiosis in preterm infants of 28+ 0–32+ 6 weeks of gestation: a randomised, placebo-controlled, double-blind, multicentre trial: the PRIMAL clinical study protocol. BMJ Open 9:e032617

    Article  PubMed  PubMed Central  Google Scholar 

  • Martoni CJ, Srivastava S, Leyer GJ (2020) Lactobacillus acidophilus DDS-1 and Bifidobacterium lactis UABla-12 improve abdominal pain severity and symptomology in irritable bowel syndrome: randomized controlled trial. Nutrients 12:363

    Article  PubMed Central  Google Scholar 

  • Matto J, Maunuksela L, Kajander K et al (2005) Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43:213–222

    Article  PubMed  CAS  Google Scholar 

  • McCauley K, Durack J, Valladares R et al (2019) Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol 144:1187–1197

    Article  PubMed  PubMed Central  Google Scholar 

  • McLean MH, Dieguez D, Miller LM et al (2014) Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut 64:332–341

    Article  PubMed  CAS  Google Scholar 

  • Mendonça RD, Carvalho NC, Martin-Moreno JM et al (2019) Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutri Metabol Cardiovasc Dis 29:69–78

    Article  CAS  Google Scholar 

  • Miyake S, Kim S, Suda W et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PloS One 10:e0137429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore WEC, Holdeman LV (1974) Human fecal flora—normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy T, Dias GP, Thuret S et al (2014) Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014:563160

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuman H, Koren O (2017) The pregnancy microbiome. In: Intestinal microbiome: functional aspects in health and disease, vol 88. Karger, Berlin, pp 1–10

    Chapter  Google Scholar 

  • Nielsen DS, Krych L, Buschard K et al (2014) Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett 588:4234–4243

    Article  CAS  PubMed  Google Scholar 

  • Nistal E, Caminero A, Vivas S et al (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie 94:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony SM, Felice VD, Nally K et al (2014) Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neurosci 277:885–901

    Article  CAS  Google Scholar 

  • Oh H, Kim H, Lee DH et al (2019a) Different dietary fibre sources and risks of colorectal cancer and adenoma: a dose–response meta-analysis of prospective studies. Br J Nutr 122:605–615

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Jang YS, Kang D et al (2019b) Efficacy and safety of new lactobacilli probiotics for unconstipated irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. Nutrients 11:2887

    Article  PubMed Central  Google Scholar 

  • Ong DK, Mitchell SB, Barrett JS et al (2010) Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J Gastroenterol Hepatol 25:1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Ooi J, Li Y, Rogers C et al (2013) Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr 143:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Organ CL, Otsuka H, Bhushan S et al (2016) Choline diet and its gut microbe–derived metabolite, trimethylamine N-oxide, exacerbate pressure overload–induced heart failure. Circ Heart Fail 9:e002314

    Article  CAS  PubMed  Google Scholar 

  • Pagnini C, Corleto VD, Mangoni ML et al (2011) Alteration of local microflora and a-defensins hyper-production in colonic adenoma mucosa. J Clin Gastroenterol 45:602–610

    Article  CAS  PubMed  Google Scholar 

  • Parnell JA, Reimer RA (2012) Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3:29–34

    Article  PubMed  Google Scholar 

  • Peyrottes A, Seksik P, Doré J, Marteau P (2019) The microbiome in IBD. In: Biomarkers in inflammatory bowel diseases. Springer, Cham, pp 293–301

    Chapter  Google Scholar 

  • Picca A, Fanelli F, Calvani R et al (2018a) Gut dysbiosis and muscle aging: searching for novel targets against sarcopenia. Mediat Inflamm 2018:7026198

    Article  CAS  Google Scholar 

  • Picca A, Lezza AMS, Leeuwenburgh C (2018b) Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders. Rejuvenation Res 21:350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10:S49–S66

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy K, Choi JN, Kim J et al (2011) Microbial community and metabolomics comparison of irritable bowel syndrome faeces. J Med Microbiol 60:817–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poretsky R, Rodriguez R, Luo LM et al (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9:e93827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portincasa P, Bonfrate L, de Bari O et al (2017) Irritable bowel syndrome and diet. Gastroenterol Rep 5:11–19

    Article  Google Scholar 

  • Principi N, Cozzali R, Farinelli E et al (2018) Gut dysbiosis and irritable bowel syndrome: the potential role of probiotics. J Infect 76:111–120

    Article  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  • Queipo-Ortuño MI, Boto-Ordóñez M, Murri M et al (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Rajilic-Stojanovic M, Biagi E, Heilig HG et al (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterol 141:1792–1801

    Article  CAS  Google Scholar 

  • Rigottier-Gois L (2013) Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risnes KR, Belanger K, Murk W et al (2011) Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1, 401 US children. Am J Epidemiol 173:310–318

    Article  PubMed  Google Scholar 

  • Rodriguez JM et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050

    PubMed  Google Scholar 

  • Romero R, Hassan SS, Gajer P et al (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland I, Gibson G, Heinken A et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24

    Article  CAS  PubMed  Google Scholar 

  • Russell W, Gratz S, Duncan S et al (2011) High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93:1062–1072

    Article  CAS  PubMed  Google Scholar 

  • Sabate JM, Jouet P, Harnois F et al (2008) High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg 18:371–377

    Article  PubMed  Google Scholar 

  • Santacruz A, Collado MC, Garcia-Valdes L et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92

    Article  CAS  PubMed  Google Scholar 

  • Scher JU et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife 2:e01202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt TS, Hayward MR, Coelho LP et al (2019) Extensive transmission of microbes along the gastrointestinal tract. elife 8:e42693

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz MD, Atay Ç, Heringer J et al (2014) High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514:508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla R, Ghoshal U, Ranjan P, Ghoshal UC (2018) Expression of toll-like receptors, pro-, and anti-inflammatory cytokines in relation to gut microbiota in irritable bowel syndrome: the evidence for its micro-organic basis. J Neurogastroenterol Motil 24:628

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobhani I, Tap J, Roudot-Thoraval F et al (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6:e16393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaight C, Gross J, Horsch A, Puder JJ (2016) Gestational diabetes mellitus. In: Novelties in diabetes, vol 31. Karger Publishers, Berlin, pp 163–178

    Chapter  Google Scholar 

  • Spencer MD, Hamp TJ, Reid RW et al (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterol 140:976–986

    Article  CAS  Google Scholar 

  • Stiemsma LT, Arrieta MC, Dimitriu PA et al (2016) Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin Sci 130:2199–2207

    Article  CAS  Google Scholar 

  • Stout MJ, Conlon B, Landeau MU et al (2013) Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 208:226–2e1

    Article  PubMed  PubMed Central  Google Scholar 

  • Su T, Liu R, Lee A et al (2018) Altered intestinal microbiota with increased abundance of Prevotella is associated with high risk of diarrhea-predominant irritable bowel syndrome. Gastroenterol Res Pract:2018

    Google Scholar 

  • Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N et al (2019) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin Nutr 38:2569–2575

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Wang Z, Fan Y et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120:1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarrerias AL, Costil V, Vicari F et al (2011) The effect of inactivated Lactobacillus LB fermented culture medium on symptom severity: observational investigation in 297 patients with diarrhea-predominant irritable bowel syndrome. Dig Dis 29:588–591

    Article  CAS  PubMed  Google Scholar 

  • Teo SM, Tang HH, Mok D et al (2018) Airway microbiota dynamics uncover a critical window for interplay of pathogenic bacteria and allergy in childhood respiratory disease. Cell Host Microbe 24:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevaranjan N, Puchta A, Schulz C et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836

    Article  CAS  PubMed  Google Scholar 

  • Ticinesi A, Lauretani F, Milani C et al (2017) Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut–muscle axis? Nutrients 9:1303

    Article  PubMed Central  CAS  Google Scholar 

  • Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Tjonneland A, Overvad K, Bergmann MM et al (2009) Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58:1606–1611

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh P, Ley R, Mahowald M et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh P, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Tongeren SP, Slaets JP, Harmsen HJM, Welling GW (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdam FJ, Rensen SS, Driessen A et al (2011) Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol 45:149–152

    Article  CAS  PubMed  Google Scholar 

  • Vitaglione P, Mennella I, Ferracane R et al (2015) Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 101:251–261

    Article  CAS  PubMed  Google Scholar 

  • von Martels JZ, Bourgonje AR, Harmsen HJ et al (2019) Assessing intestinal permeability in Crohn’s disease patients using orally administered 52Cr-EDTA. PloS One 14(2):e0211973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol 143:913–916

    Article  CAS  Google Scholar 

  • Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J5:220–230

    Article  CAS  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RY, Abdullah M, Maattanen P et al (2017) Protein kinase C delta signaling is required for dietary prebiotic induced strengthening of intestinal epithelial barrier function. Sci Rep 7:40820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngster I, Russell G, Pindar C et al (2014) Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312:1772–1778

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Feng Q, Wong SH et al (2017) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66:70–78

    Article  CAS  PubMed  Google Scholar 

  • Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4:e00692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Q, Gong J, Liu X et al (2019) Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int 129:104468

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang D, Jia H et al (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895–905

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Hu HJ, Liu CY et al (2016) Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine 95:e2562

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhou J, Liu J et al (2019) Metagenome of gut microbiota of children with nonalcoholic fatty liver disease. Front Pedtr 7:518

    Article  Google Scholar 

  • Zhu L, Baker SS, Gill C et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatol 57:601–609

    Article  CAS  Google Scholar 

  • Zhuang X, Xiong L, Li L et al (2017) Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta‐analysis. J Gastroenterol Hepatol 32:28–38

    Article  PubMed  Google Scholar 

  • Zhuang X, Tian Z, Li L et al (2018) Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front Microbiol 9:1600

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Catherine Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Archer, A.C. (2021). Gut Bacterial Dysbiosis and Its Clinical Implications. In: Pawar, S.V., Rishi, P. (eds) Probiotic Research in Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-33-6236-9_1

Download citation

Publish with us

Policies and ethics