Skip to main content
  • 612 Accesses

Abstract

With the continuous advancement of the aviation and aerospace industry, higher requirements are desired for the structure and size of casting parts, e.g., lightweight, holistic, and precision. In line with this development trend, the demand for precision forming of complex thin-walled casting parts is getting stronger and stronger. Defects, such as porosity, cold shut, and misrun for thin-walled casting parts, are easy to form during the filling process with a fast cooling rate that cannot guarantee the fluidity and feeding ability of the liquid metal. Besides, the larger Laplace force and viscous force caused by the thinner thickness of the mold cavity wall may influence the flow state of the front edge of the liquid metal during the filling process of the casting parts, which has a great impact on the precision forming of these thin-walled casting parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.W. Chen, Q.T. Hao, W.Q. Jie, Study on counter-gravity casting of complex thin wall A357 alloy castings%A357. Casting 053(012), 988–991 (2004)

    Google Scholar 

  2. B. Mondal, S. Kundu, A.K. Lohar et al., Net shape manufacturing of intricate components of A356/SiC composite through rapid prototyping integrated investment casting. Mater. Sci. Eng. A 498(1), 37–41 (2008)

    Article  Google Scholar 

  3. R.Z. Hong, Research for foundry process of complicate thin-wall aluminum alloy castings. Mater. Eng. 07, 47–48 (2000)

    Google Scholar 

  4. Y.Z. Lu, Y.H. Wei, X.Q. Zeng et al., Development of the forming process for casting magnesium alloys. Casting 07, 383–387 (2000)

    Google Scholar 

  5. S.M. Xiong, Research progress of magnesium alloy die casting forming technology. Aeronaut. Manuf. Technol. 02, 32–35 (2006)

    Google Scholar 

  6. Z. Liu, The latest research progress of magnesium alloy casting forming. Prog Mater China 02, 10–15 (2011)

    Google Scholar 

  7. Y.G. Zhou, W.D. Zeng, X.Q. Li et al., Toughening mechanism of titanium alloy under high temperature deformation. Acta Metall. Sinica 01, 45–48 (1999)

    Google Scholar 

  8. X. Xue, L. Xu, Numerical simulation and prediction of solidification structure and mechanical property of a superalloy turbine blade. Mater. Sci. Eng. 499(1), 69–73 (2009)

    Article  MathSciNet  Google Scholar 

  9. S. Wang, P. Guo, L. Yang, Centrifugal precision cast TiAl turbocharger wheel using ceramic mold. J. Mater. Process. Technol. 204(1), 492–497 (2008)

    Google Scholar 

  10. J.R. Wood, P.A. Ruso, M.F. Welter et al., Thermomechnical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Mo-Si for structure applications. Sci. Eng. A 243(1), 109–118 (1998)

    Article  Google Scholar 

  11. S.L. Xiao, Y.Y. Chen, H.Y. Zhu et al., Recent advances on precision casting of large thin wall complex castings of titanium alloys. Rare Metal Mater. Eng. 35(5), 678–681 (2006)

    Google Scholar 

  12. T. Noda, Application of cast gamma TiAl for automobiles. Intermetallics 6(7), 709–713 (1998)

    Article  Google Scholar 

  13. W.Q. Liu, Study on Bottom Injection Vacuum Casting of TA15 Alloy (Harbin Institute of Technology, Harbin, 2010).

    Google Scholar 

  14. X.C. Ye, Basic Research on Bottom Injection Vacuum Casting Technique for Small Thin-Walled Alloy Parts (Harbin Institute of Technology, Harbin, 2010).

    Google Scholar 

  15. S. Misha, R. Ranjana, Reverse solidification path methodology for dewaxing ceramic shells in investment casting process. Mater. Manuf. Process 25(12), 1385–1388 (2010)

    Article  Google Scholar 

  16. J. Zhang, Z.H. Zhang, Magnesium Alloy and Its Application (Chemical Industry Press, Beijing, 2004).

    Google Scholar 

  17. W.H. Chen, R.Z. Chen, Development of aerospace investment casting technology. J. Aeronaut. Mater. 01, 57–69 (1992)

    Google Scholar 

  18. X.F. Yu, G.Z. Zhang, X.Y. Wang et al., Non-equilibrium microstructure of hyper-eutectic Al-Si alloy solidified under super high pressure. J. Mater. Sci. 34, 4149–4152 (1999)

    Article  Google Scholar 

  19. Z. Liu, Z.G. Wang, Y. Wang et al., Study on pressure filling and solidification process of Magnesium alloy. Chin. J. Mater. Res. 13(6), 641–644 (1999)

    Google Scholar 

  20. D.F. Zhang, Z.T. Fan, H.B. Wu et al., Filling ability of magnesium alloys in the lost foam casting (LFC) with vacuum and low pressure. Special-Cast Non-Ferrous Alloys 25(2), 115–117 (2005)

    Google Scholar 

  21. L. Yan, M. Wang, Z.F. Shan et al., Research on filling capacity of adjusted pressure casting of magnesium alloys. Foundry Technol. 26(10), 914–915 (2005)

    Google Scholar 

  22. Z.B. Zhou, J.S. Li, H.C. Kou et al., Effects of processing parameters on filling behavior of thin-walled casting in low pressure casting. Special-Cast Non-Ferrous Alloys 28(1), 23–25 (2008)

    Google Scholar 

  23. X. Dong, N. Huang, S. Wu, Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings. China Foundry 2(2), 102–107 (2005)

    Google Scholar 

  24. Z.L. Wang, Influence of gas in mold cavity on mold-filling capacity for thin-walled aluminum alloy castings. Foundry 61(7), 768–773 (2012)

    Google Scholar 

  25. W.M. Jiang, Z.T. Fan, D.J. Liu, Influence of process parameters on filling ability of A356 aluminum alloy in expendable-patterns hell casting with vacuum and low pressure. Int. J. Cast Metal. Res. 25(1), 52 (2012)

    Article  Google Scholar 

  26. G.X. Liang, E.D. Wang, S.Y. He et al., Microstructure characteristics of aluminum alloy under pressure solidification. Ordnance Mater. Sci. Eng. 15(1), 15 (1992)

    Article  Google Scholar 

  27. B. Tang, Z.T. Fan, Z. Zhao et al., Effects of pressure field on structure and properties of loot foam casting ZL101 alloy. Special-Cast Non-Ferrous Alloys 29(7), 629–641 (2009)

    Google Scholar 

  28. G.F. Mi, S.Y. Zeng, Effect of solidification condition on secondary dendrite arm spacing of the A357alloyundercounter-pressure casting. J. Wuhan Univ. Technol. Mater, 119–122 (2009)

    Google Scholar 

  29. R.W. Gregorutti, J.E. Grau, C.I. Elsner, Microstructural mechanical and electrochemical characterization of biomaterial ASTM F745castbyvacuum. Mater. Sci. Technol. 28(6), 742–747 (2012)

    Article  Google Scholar 

  30. Q. Yan, H. Yua, Z. Xua, Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy. J. Alloys Compd. 501, 351–357 (2010)

    Article  Google Scholar 

  31. S. Shendye, B. King, P. McQuay, Mechanical properties of counter gravitycastIN718. TMS 124, 133 (2005)

    Google Scholar 

  32. B.W. Xiong, Q. Zaho, Effects of sample thickness on microstructures and mechanical properties of A357alloy. Int. J. Cast Metal. Res. 25(6), 374–378 (2012)

    Article  Google Scholar 

  33. Y.J. Wang, Counter gravity casting technology of aluminum alloy. Foundry Technol. 25(5), 361–362 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, A., Du, D., Xing, H., Zhu, G. (2021). Advanced Adjusted Pressure Casting Process. In: Precision Forming Technology of Large Superalloy Castings for Aircraft Engines. Springer, Singapore. https://doi.org/10.1007/978-981-33-6220-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6220-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6219-2

  • Online ISBN: 978-981-33-6220-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics